Skip to main content
Log in

A “constrained-chain” network model for viscoelastic fluids

Part I: Model development

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The “constrained-chain” theory of rubber elasticity proposed by Crossland and van der Hoff was found by them to predict quantitatively many salient features of experimental studies.

The present work utilized the “constrained-chain” strain-energy function in a development parallel to that of the “rubberlike liquid” model of Lodge to arrive at a naturally strain-dependent integral constitutive equation for viscoelastic fluids. It can be considered as a particular case of theK-BKZ model with part of the memory function arising from a molecular model. The memory function contains the only nonlinear parameter of the model, the maximum extensibility of a network chain. The model gives a singularity in the stress integral when a network chain is streched to its maximum extensibility. To eliminate this singularity, an assumption has been made which reduces the number of fully extended network chains to zero. Alternative approaches are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lodge, A.S., Elastic Liquids, Academic Press (New York, 1964)

    Google Scholar 

  2. Lodge, A.S., Rheol. Acta7, 379 (1968)

    Google Scholar 

  3. Kaye, A., Brit. J. Appl. Phys.17, 803 (1966)

    Google Scholar 

  4. Tanner, R.I., J.M. Simmons, Chem. Eng. Sci.22, 1803 (1967)

    Google Scholar 

  5. Yamamoto, M., Appl. Polym. Symp.20, 3 (1973)

    Google Scholar 

  6. Wagner, M.H., Rheol. Acta15, 136 (1976)

    Google Scholar 

  7. Spriggs, T.W., J.D. Huppler, R.B. Bird, Trans. Soc. Rheol.10, 191 (1966)

    Google Scholar 

  8. Bird, R.B., P.J. Carreau, Chem. Eng. Sci.23, 427 (1968)

    Google Scholar 

  9. Carreau, P.J., Trans. Soc. Rheol.16, 99 (1972)

    Google Scholar 

  10. Treloar, L.R.G., The Physics of Rubber Elasticity, 3rd Ed., Oxford University Press (London, 1975)

    Google Scholar 

  11. Crossland, A.H., B.M.E. van der Hoff, J. Macro. Sci.-Chem.A10, 825 (1976)

    Google Scholar 

  12. Dusek, K., W. Prins, Advan. Polym. Sci.6, 1 (1969)

    Google Scholar 

  13. Chan, T.W., I.F. Macdonald, Rheol. Acta22 361 (1983)

    Google Scholar 

  14. Chan, T.W., Ph.D. Thesis, University of Waterloo, Waterloo, Ontario, 1982

  15. Rivlin, R.S., Large Elastic Deformations, in: F.R. Eirich (ed.) Rheology, Vol.1, Chapter 10, Academic Press (New York, 1956)

    Google Scholar 

  16. Bird, R.B., C. Hassager, R.C. Armstrong, C.F. Curtiss, Dynamics of Polymeric Liquids, Vol. II, Kinetic Theory, Wiley (New York, 1977)

    Google Scholar 

  17. Rouse, P.E., J. Chem. Phys.21, 1272 (1953)

    Google Scholar 

  18. Lodge, A.S., Trans. Faraday Soc.52, 120 (1956)

    Google Scholar 

  19. Yamamoto, M., J. Phys. Soc. Japan11, 413 (1956);12, 1148 (1957);13, 1200 (1958)

    Google Scholar 

  20. Tanner, R.I., A.I.Ch.E.J.15, 177 (1969)

    Google Scholar 

  21. Kaye, A., College of Aeronautics Note No. 134, Cranfield, England, 1962

    Google Scholar 

  22. Bernstein, B., E.A. Kearsley, L.J. Zapas, Trans. Soc. Rheol.7, 391 (1963)

    Google Scholar 

  23. Wagner, M.H., S.E. Stephenson, J. Rheol.23, 489 (1979)

    Google Scholar 

  24. Wagner, M.H., S.E. Stephenson, Rheol. Acta18, 463 (1979)

    Google Scholar 

  25. Laun, H.M., Rheol. Acta17, 1 (1978)

    Google Scholar 

  26. Osaki, K., S. Ohta, M. Fukuda, M. Kurata, J. Polym. Sci.14, 1701 (1976)

    Google Scholar 

  27. Wagner, M.H., Rheol. Acta18, 33 (1979)

    Google Scholar 

  28. Tanner, R.I., Trans. Soc. Rheol.12, 155 (1968)

    Google Scholar 

  29. Takahashi, M., T. Masuda, S. Onogi, J. Soc. Rheol. Japan1, 16 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Alan H. Crossland whose “constrained-chain” theory of rubber elasticity provides the foundation for the work presented here. His untimely death at the age of 38 is a tragic loss for his family, for those of us who knew him as a colleague and for the field of polymer rheology which has lost a gifted researcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, T.W., Macdonald, I.F. A “constrained-chain” network model for viscoelastic fluids. Rheol Acta 22, 354–360 (1983). https://doi.org/10.1007/BF01333765

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01333765

Key words

Navigation