Skip to main content
Log in

Several effects of melt viscosity on the nature ofC p T data aboveT g for acrylate, methacrylate, and hydrocarbon polymers

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Using objective computerized statistical procedures, we have examined high precisionC p data by DSC reported by Wunderlich and Gaur for a series of alkyl acrylate and methacrylate polymers. Although they claimed the data to be linear inT aboveT g , our results do not support the linear model. One or two endothermic slope changes are revealed aboveT g in lowT f polymers (T f < 20 °C) and at least one exothermic slope change in highT f polymers (T f > 20 °C).T f is the flow temperature of Ueberreiter. Both the first endotherm and the first exotherm occur near (1.22 ± 0.07)T g , suggesting aT ll type phenomenon.T ll varies as\(1/\bar M_n \). The first exotherm is associated by us with wetting of the DSC pan by molten polymer on the first heating of particulate highT f polymers. The rate of wetting, and presumably the magnitude of the exotherm, depends in part on the ratio,γ/η, whereγ is surface tension andη is melt viscosity of the molten polymer. Sinceγ is relatively constant, the molecular weight and temperature dependence for rate of wetting resides inη, which depends on\(\bar M_w \). For\(\bar M_n > > \bar M_c \), a second exothermic event caused by sintering, and also controlled by η, may be present. The interactive roles of\(\bar M_n ,\bar M_w ,\bar M_w /\bar M_n \) ;M c (entanglement molecular weight); particle size, and heating rate onC p T behaviour are delineated for the first time. LowT f hydrocarbon polymers, namely atactic polyalphaolefins,C 3 ,C 5 ,C 6 ; PIB; and dienes, PBD and cis-PI, exhibit single or double endotherms. Other results on highT f polymers showing exothermic effects, notably PS, PnBMA and polyglycidylmethacrylate are cited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) Wunderlich B, Gaur U (1981) Polymer Preprints. Am Chem Soc 22:308; (b) ibid (1983) in: Craver CD (ed) Advances in Chemistry Series No 203. American Chemical Society, Washington, DC. pp 195–208. This paper makes no reference to (a) in which theC p T data first appeared

    Google Scholar 

  2. Hoffmann R, Knappe W (1971) Kolloid-Z u Z Polymere 242:763

    Google Scholar 

  3. Ueberreiter K, Naghizadeh J (1972) Kolloid-Z u Z Polymere 250:927

    Google Scholar 

  4. Lai JH (1976) J Appl Polymer Science 20:1059

    Google Scholar 

  5. Gaur U, Lau SF, Wunderlich BB, Wunderlich B (1982) J Phys Chem Ref Data 11:1065

    Google Scholar 

  6. Boyer RF (1980) J Macromol Sci, Part B, Physics B18:461

    Google Scholar 

  7. Ibid, figure 18

  8. Ibid, figure 21 and table 4

  9. Tukey JW (1977) Exploratory Data Analysis, Addison-Welsey, Reading, Mass

    Google Scholar 

  10. Anscombe FJ, Tukey JW (1963) Technometrics 5:141

    Google Scholar 

  11. Boyer RF, Miller RL, Park C (1982) J Appl Polym Sci 27:1565

    Google Scholar 

  12. Boyer RF (1982) Macromolecules 15:1498

    Google Scholar 

  13. Solc K, Keinath SE, Boyer RF (1983) Macromolecules 16:1645

    Google Scholar 

  14. Boyer RF (1984) Macromolecules 17:1803

    Google Scholar 

  15. Boyer RF, Enns JB, submitted to J Appl Polym Sci

  16. Boyer RF (1982) Macromolecules 15:774

    Google Scholar 

  17. Boyer RF, Miller RL (1984) Macromolecules 17:365

    Google Scholar 

  18. Boyer RF (1981) Europ Polym J 17:661

    Google Scholar 

  19. Ueberreiter K (1943) Kolloid-Z 102:272, especially figure 10

    Google Scholar 

  20. Ueberreiter K, Orthmann J-J (1958) Kunststoffe 48:525

    Google Scholar 

  21. (b) Ueberreiter K, Buhlke D (1971) Ber Bunsenges Phys Chem 75:1221

    Google Scholar 

  22. Denny LR, Panichella KM, Boyer RF (1984) J Polym Sci Polym Symposium 71:39; (1985) Errata, Polymer Letters 23:261

    Google Scholar 

  23. Boyer RF (1985) in: Pethrich RA (ed) Polymer Yearbook, vol 2. Harwood Academic Press, London, pp 233–343

    Google Scholar 

  24. Schonhorn H, Frisch HL, Kwei TK (1966) J Appl Phys 37:4967

    Google Scholar 

  25. Wu S (1982) Polymer Interface and Adhesion. Marcel Dekker, Inc, New York, Basel

    Google Scholar 

  26. Gourari A, Bendaoud M, Lacabanne C, Boyer RF (1985) J Polym Sci, Polym Phys Ed 23:889

    Google Scholar 

  27. Claudy P, Létoffé JM (1983) Polym Bul 9:245

    Google Scholar 

  28. Boyer RF, Panichella KM, Denny LR (1983) Polym Bul 9:344

    Google Scholar 

  29. Bares V, Wunderlich B (1973) J Polym Sci, Polym Phys Ed 11:861

    Google Scholar 

  30. Karasz FE, Bair HE, O'Reilly JM (1965) J Phys Chem 69:2657

    Google Scholar 

  31. Figure 27 of [6]

  32. Stadnicki SJ, Gillham JK, Boyer RF (1976) J Appl Polym Sci 20:1245

    Google Scholar 

  33. Enns JB, Boyer RF, Gillham JK (1977) Polymer Preprint Am Chem Soc 18:629

    Google Scholar 

  34. Dainton FS, Evans DM, Hoare FE, Melia TP (1962) Polymer 3:286

    Google Scholar 

  35. Passaglia E, Kevorkiam K (1963) J Appl Physics 34:90

    Google Scholar 

  36. Cowie JMG (1973) Europ Polym J 9:1041

    Google Scholar 

  37. Ferry JD, Parks GS (1936) J Chem Phys 4:70

    Google Scholar 

  38. Furakawa GJ, Reilly ML (1953) J Res Nat'l Bur Standards 56:285

    Google Scholar 

  39. Gianotti G, Capizzi A (1968) Europ Polym J 4:677

    Google Scholar 

  40. Moraglio G, Gianotti G (1967) Chimica Ind (Milan) 48:224

    Google Scholar 

  41. Bourdariat J, Berton A, Chaussy J, Isnard R, Odin J (1973) Polymer 14:167; Bourdariat J, Isnard R, Odin J (1973) J Polym Sci Polym Phys Ed 11:1817

    Google Scholar 

  42. Boyer RF, Miller RL (1978) Rubber Chem Techn 51:718

    Google Scholar 

  43. Gaur U, Wunderlich B (1981) J Phys Chem Ref Data 10:1051

    Google Scholar 

  44. Boyer RF (1985) J Polym Sci, Polym Phys Ed 23:21

    Google Scholar 

  45. Beck DL, Hiltz AA, Knox JR (1963) Soc Plastics, Eng Trans 3:279

    Google Scholar 

  46. Gaur U, Wunderlich BB, Wunderlich B (1983) J Phys Chem Ref Data 12:29

    Google Scholar 

  47. Chang SS, Bestul AB (1971) J Res Nat'l Bur Standards 75A:118

    Google Scholar 

  48. Denny LR, Boyer RF, Elias H-G (1980) Organic Coatings and plastics Preprints. Am Chem Soc 42:682. These DSC results are summarized in table 6 and discussed in the accompanying text of [25]

    Google Scholar 

  49. Lau WM, Burns CM (1973) J Colloid Interface Science 45:295; (1974) J Polym Sci Polym Phys Ed 12:431

    Google Scholar 

  50. Maeda S, Iwabuchi S, Shiojiri M (1984) J Appl Physics (Japan) 23:830

    Google Scholar 

  51. Meier DJ, MMI, suggested the use of this relationship to calculate exothermic heat

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr. F. R. Schwarzl on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagers, M.L., Boyer, R.F. Several effects of melt viscosity on the nature ofC p T data aboveT g for acrylate, methacrylate, and hydrocarbon polymers. Rheol Acta 24, 232–242 (1985). https://doi.org/10.1007/BF01332602

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01332602

Key words

Navigation