Skip to main content
Log in

Small deformation viscoelastic response of gum and highly filled elastomers

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Small deformation viscoelastic response has been investigated in a series of five elastomeric binders, both with and without nonreinforcing filler. The filled systems were found to be both nonlinear viscoelastic and thermorheologically complex. These behaviors suggest the existence of a secondary relaxation process. The origin of this secondary process was modeled as an interphase of polymer weakly adsorbed on the filler surface. Decomposition of timetemperature shift factors for filled vs unfilled properties showed that the mechanical response of this interphase followed Arrhenius behavior. Measured activation energies ranged from 24 to 76kJ/mole, depending on the cohesiveenergy density of the elastomeric binder. Finally, these activation energies were related to the strain amplitude dependent nonlinear factors for the polymeric systems which contained no polar groups in their backbone, suggesting that in these systems both the nonlinear and thermorheologically complex nature of the filled materials' viscoelastic response originate from relaxations within this interphase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen LE (1967) J Composite Mater 1:100–119

    Google Scholar 

  2. Kraus G (1977) Angew Makromol Chem 60/61:215–249

    Google Scholar 

  3. Medalia AI (1978) Rubber Chem Technol 51:437–523

    Google Scholar 

  4. Bueche F (1962) Physical Properties of Polymers. Wiley, New York

    Google Scholar 

  5. Eirich FR, Smith TL (1972) In: Liebowitz H (ed) Fracture: An Advanced Treatise, Vol. 7. Academic Press, New York, pp 351–609

    Google Scholar 

  6. Boonstra B (1973) In: Morton M (ed) Rubber Technology, Second Edition. Van Nostrand Reinhold, New York, pp 51–86

    Google Scholar 

  7. Landel RF (1958) Trans Soc Rheol 2:53–75

    Google Scholar 

  8. Landel RF, Smith TL (1961) J Am Rocket Soc 31:599–608

    Google Scholar 

  9. Droste DH, di Benedetto AT (1969) J Appl Polym Sci 13:2149–2168

    Google Scholar 

  10. Kraus G, Gruver JT (1970) J Polym Sci, Polym Phy Ed 8:571–581

    Google Scholar 

  11. Nicolais L, Kolarik J, Janecek J (1977) In: Chemistry and Properties of Crosslinked Polymers. Academic Press, New York, pp 325–339

    Google Scholar 

  12. Poltersdorf S, Tümmler A, Poltersdorf B (1986) Plaste u. Kautschuk 33:254–258

    Google Scholar 

  13. Van der Waal CW, Bree H, Schwarzl FR (1965) J Appl Polym Sci 9:2143–2166

    Google Scholar 

  14. Schwarzl FR (1967) In: Eringen AC, Liebowitz H, Koh SL, Crowley JM (eds) Mechanics and Chemistry of Solid Propellants. Pergamon, Oxford, pp 503–538

    Google Scholar 

  15. Adicoff A, Lepie AH (1970) J Appl Polym Sci 14:953–966

    Google Scholar 

  16. Isono Y, Ferry JD (1984) Rubber Chem Technol 57:925–943

    Google Scholar 

  17. Stacer RG, von Meerwall ED, Kelley FN (1985) Rubber Chem Technol 58:913–923

    Google Scholar 

  18. Oono R (1974) J Polym Sci, Polym Phy Ed 12:1383–1394

    Google Scholar 

  19. Ferry JD, Fitzgerald ER (1982) Rubber Chem Technol 55:1403–1412

    Google Scholar 

  20. Onogi S, Masuda T, Matsumoto T (1970) Trans Soc Rheol 14:275–291

    Google Scholar 

  21. Payne AR, Whittaker RF (1971) Rubber Chem Technol 44:440–478

    Google Scholar 

  22. Ulmer JD, Chivico VE, Scott CE (1973) Rubber Chem Technol 46:897–926

    Google Scholar 

  23. Stacer RG, Husband DM, Stacer HL (1987) Rubber Chem Technol 60:227–244

    Google Scholar 

  24. Arai K, Ferry JD (1986) Rubber Chem Technol 59:592–604

    Google Scholar 

  25. Ferry JD (1980) Viscoelastic Properties of Polymers, Third Edition. Wiley, New York

    Google Scholar 

  26. Fitzgerald JE (1967) In: Eringen AC, Liebowitz H, Koh SL, Crowley JM (eds) Mechanics and Chemistry of Solid Propellants. Pergamon, Oxford, pp 19–46

    Google Scholar 

  27. Kelley FN (1969) In: Boyars C, Klager K (eds) Propellants Manufacture, Hazards, and Testing. American Chemical Society, Washington DC

    Google Scholar 

  28. Kraus G (1984) J Appl Polym Sci, Appl Polym Sym 39:75–92

    Google Scholar 

  29. Oberth AE, Bruenner RS (1965) Trans Soc Rheol 9:165–173

    Google Scholar 

  30. Smit PPA (1966) Rheol Acta 5:277–289

    Google Scholar 

  31. Ziegel KD (1969) J Colloid Interface Sci 29:72–79

    Google Scholar 

  32. Harwood JAC, Payne AR, Smith JF (1969) Kautsch Gummi Kunstst 22:548–554

    Google Scholar 

  33. Kaufman S, Slichter WP, Davis DD (1971) J Polym Sci, Polym Phy Ed 9:829–839

    Google Scholar 

  34. Fowkes FM (1966) In: Patrick RL (ed) Treatise on Adhesion and Adhesives. Dekker, New York, pp 325–449

    Google Scholar 

  35. von Meerwall E, Stone T (1989) J Polym Sci, Polym Phy Ed 27:503–522

    Google Scholar 

  36. Chong JS (1962) Rheology of Concentrated Suspensions. Ph D Dissertation, University of Utah

  37. Farris RJ (1968) Trans Soc Rheol 12:281–301

    Google Scholar 

  38. Payne AR (1962) J Appl Polym Sci 6:57–63

    Google Scholar 

  39. Payne AR (1963) J Appl Polym Sci 7:873–885

    Google Scholar 

  40. Payne AR (1965) J Appl Polym Sci 8:2661–2686

    Google Scholar 

  41. Tanner RI (1988) J Rheol 32:673–702

    Google Scholar 

  42. Williams ML, Landel RF, Ferry JD (1955) J Amer Chem Soc 77:3701–3706

    Google Scholar 

  43. Frisch HL, Simha R, Eirich FR (1953) J Chem Phys 21:365–375

    Google Scholar 

  44. Hoeve C, DiMarzio S, Peyser P (1965) J Chem Phys 42:2558–2565

    Google Scholar 

  45. Silberberg A (1968) J Chem Phys 48:2835–2840

    Google Scholar 

  46. De Gennes P-G (1979) Scaling Concepts in Polymer Physics. Cornell Press, Ithaca, New York

    Google Scholar 

  47. Fesko DG, Tschoegl NW (1971) J Polym Sci C 35:51–69

    Google Scholar 

  48. Fesko DG, Tschoegl NW (1974) Intern J Polymeric Mater 3:51–79

    Google Scholar 

  49. Cohen RE, Tschoegl NW (1976) Trans Soc Rheol 20:153–169

    Google Scholar 

  50. Kaeble DH (1971) Trans Soc Rheol 15:235–260

    Google Scholar 

  51. Schreuder-Stacer HL, Stacer RG (1988) J Adhesion 25:1–21

    Google Scholar 

  52. Gent AN, Park B (1984) J Mater Sci 19:1947–1956

    Google Scholar 

  53. Schapery RA (1987) Polym Eng Sci 27:63–72

    Google Scholar 

  54. Anderson LL, Farris RJ (1988) Polym Eng Sci 28:522–528

    Google Scholar 

  55. Wool RP, O'Connor KM (1981) J Appl Phy 52:5953–5963

    Google Scholar 

  56. Wool RP, O'Connor KM (1982) J Polym Sci C 20:7–16

    Google Scholar 

  57. Polmanteer KE (1988) Rubber Chem Technol 61:470–502

    Google Scholar 

  58. Gardon JL (1966) In: Patrick RL (ed) Treatise on Adhesion and Adhesives. Dekker, New York, pp 269–324

    Google Scholar 

  59. Wu S (1982) Polymer Interface and Adhesion. Dekker, New York

    Google Scholar 

  60. Brandrup J, Immergut EH (1966) Polymer Handbook. Wiley, New York

    Google Scholar 

  61. Williams ML, Kelley FN (1970) In: Proceedings of the 5th International Congress of the Society of Rheology. University of Tokyo Press, Tokyo

    Google Scholar 

  62. Nielsen LE (1974) Mechanical Properties of Polymers and Composites. Dekker, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stacer, R.G., Husband, D.M. Small deformation viscoelastic response of gum and highly filled elastomers. Rheol Acta 29, 152–162 (1990). https://doi.org/10.1007/BF01332382

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01332382

Key words

Navigation