Skip to main content
Log in

Fractal-time stochastic processes and dynamic functions of polymeric systems

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Dynamic material functions of polymeric systems are calculated via a defect-diffusion model. The random motion of defects is modelled by a fractaltime stochastic process. It is shown that the dynamic functions of polymeric solutions can be approximated by the defect-diffusion process of the mixed type. The relaxation modulus of Kohlrausch type is obtained for a fractal-time defect-diffusion process, and it is shown that this modulus is capable of portraying the dynamic behavior of typical viscoelastic solutions.

The Fourier transforms of the Kohlrausch function are calculated to obtainη′ andη″. A three-parameter model forη′ andη″ is compared with the previous calculations. Experimental measurements for five polymer solutions are compared with model predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

rate of deformation tensor

G(t) :

mechanical relaxation modulus

H :

relaxation spectrum

I(t):

flux of defects

P n (s) :

probability of finding a walker ats aftern-steps

P :

generating function ofP n (s)

s(t) :

fraction of surviving defects

Γ, (γ) :

gamma function (incomplete)

η 0 :

zero shear viscosity

η * (ω) :

complex viscosity

ω :

frequency

t n :

n-th moment

F[]:

Fourier transform

f * (u) :

Laplace transform off(t)

η′, η″ :

components ofη *

G f, η *f :

fractional model

G 3, η *3 :

three parameter model

\(\bar z\) :

complex conjugate ofz

\(\mathop D\limits^ \circ \) :

material time derivative ofD

References

  1. Glarum JH (1960) J Chem Phys 33:1371

    Google Scholar 

  2. Bordewijk P (1975) Chem Phys Lett 32:592

    Google Scholar 

  3. Shlesinger MF, Montroll EW (1984) Proc Natl Acad Sci, USA 81:1280

    Google Scholar 

  4. Mandelbrot BB (1982) The Fractal Geometry of Nature. Freeman, New York

    Google Scholar 

  5. Shlesinger MF (1984) J Stat Phys 36:639

    Google Scholar 

  6. Montroll EW, Weiss GH (1965) J Math Phys 6:167

    Google Scholar 

  7. Montroll EW (1969) J Math Phys 10:753

    Google Scholar 

  8. Feller W (1971) An Introduction to Probability and its Application, Vol. II. Wiley, New York

    Google Scholar 

  9. De Kee D, Stastna J, Powley MB (1987) J Non-Newt Fluid Mech 26:149

    Google Scholar 

  10. Gradshteyn IS, Ryshik IM (1980) Table of Integrals, Series and Products. Academic Press, New York

    Google Scholar 

  11. Kohlrausch F (1863) Pogg Ann Phys 119:352

    Google Scholar 

  12. Wagner MH (1976) Rheol Acta 15:133

    Google Scholar 

  13. Stastna J, De Kee D (1988) Math Comput Modelling 11:985

    Google Scholar 

  14. Schümmer P, Zang W (1987) Rheol Acta 26:285

    Google Scholar 

  15. Bendler JT (1984) J Stat Phys 36:625

    Google Scholar 

  16. Helman WP, Funabashi K (1979) J Chem Phys 71:2458

    Google Scholar 

  17. Palmer RG, Stein DE, Abrahams H, Anderson PW (1984) Phys Rev Lett 53:958

    Google Scholar 

  18. Kakalios RA, Street RA, Jackson WB (1987) Phys Rev Lett 59:1037

    Google Scholar 

  19. Scher H, Montroll EW (1975) Phys Rev B 12:2455

    Google Scholar 

  20. Montfort JP, Marin G, Arman G, Monge PR (1979) Rheol Acta 18:623

    Google Scholar 

  21. Legrand DG, Olszewski WV, Bendler JT (1987) J Polym Sci Phys 25:1149

    Google Scholar 

  22. Moynihan ET, Boesch LP, Laberge NL (1973) Phys Chem Glasses 14:122

    Google Scholar 

  23. Coleman BD, Noll W (1964) Second Order Effects in Elasticity, Plasticity and Fluid Dynamics, Int Symp Haifa (1962). MacMillan, New York

    Google Scholar 

  24. Stastna J, De Kee D, Powley MB, Schümmer P, Otten B (1989) J Rheol 33:1157

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stastna, J., De Kee, D., Powley, M. et al. Fractal-time stochastic processes and dynamic functions of polymeric systems. Rheol Acta 29, 137–144 (1990). https://doi.org/10.1007/BF01332380

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01332380

Key words

Navigation