Skip to main content
Log in

Shear creep and recovery of a technical polystyrene

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The torsional creep and recoverable bahaviour of a technical polystyrene is reported over seven orders of magnitude of the value of the compliance from 10−8 to 10−1 Pa−1 and over more than seven decades in time. The results for the recoverable compliance JR (t) reveal a dispersion region seen between the glass transition and the steady-state recoverable compliance Je. The limiting value of the final dispersion Je = 4.7 · 10−4 Pa−1 indicates a broad molecular-weight distribution. The steady-state recoverable compliance Je is independent of the temperature. The temperature dependence of the final dispersion was found to be indistinguishable from that of viscous flow. However, this temperature dependence differs significantly from that of the glass-rubber transition. A proposal has been made for the construction of creep compliance and recoverable compliance over an extended time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Link G, Schwarzl FR (1985) Rheol Acta 24:211

    Google Scholar 

  2. Schwarzl FR, Greiner R, Link G, Zahradnik F (1984) In: Mena B, García-Rejón A, Rangel-Nafaile C (eds) Advances in Rheology, Vol 1:211, Uni Nacional Autonoma de Mexico

  3. Pfandl W, Link G, Schwarzl FR, Rheol Acta 23, 277, 1984

    Google Scholar 

  4. Leaderman H, Smith RG, J Polym Sci 14, 47 (1954)

    Google Scholar 

  5. Plazek DJ, Am Chem Soc Div Org Coat Plast Chem 35, 389 (1975)

    Google Scholar 

  6. Plazek DJ, in: Methods of Experimental Physics, Polymers, Part C, Vol 1, Academic Press, New York 1980

    Google Scholar 

  7. Janeschitz-Kriegl H, Polymer Melt Rheology and Flow Birefringence, Springer Verlag, Berlin 1983

    Google Scholar 

  8. Pfandl W, Schwarzl FR, Colloid & Polymer Sci 263, 328 (1985)

    Google Scholar 

  9. Schwarzl FR, Staverman AJ, J Appl Phys 23, 838 (1952)

    Google Scholar 

  10. Williams ML, Landel RF, Ferry JD, J Amer Chem Soc 77, 3701 (1955)

    Google Scholar 

  11. Schwarzl FR, Zahradnik F, Rheol Acta 19, 137 (1980)

    Google Scholar 

  12. Vogel H, Phys Z 22, 645 (1921)

    Google Scholar 

  13. Fulcher GS, J Am Chem Soc 8, 339, 789 (1925)

    Google Scholar 

  14. Tamman G, Hesse W, Z Anorg Chem 156, 245 (1926)

    Google Scholar 

  15. Raghupathi N, Thesis University of Pittsburgh (1975)

  16. Plazek DJ, Riande E, Markowitz H, Raghupathi N, J Polym Sci Polym Phys Ed 17, 2189 (1979)

    Google Scholar 

  17. Plazek JD, Chelko AJ, Polymer 18, 15 (1977)

    Google Scholar 

  18. Plazek DJ, Agarwal PK, J Appl Polym Sci 22, 2177 (1978)

    Google Scholar 

  19. Plazek DJ, Polym J 12, 43 (1980)

    Google Scholar 

  20. Plazek DJ, O'Rourke VM, J Polym Sci A 29, 209 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Link, G., Schwarzl, F.R. Shear creep and recovery of a technical polystyrene. Rheol Acta 26, 375–384 (1987). https://doi.org/10.1007/BF01332257

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01332257

Key words

Navigation