Skip to main content
Log in

A rheological equation of state for dilute polymer solutions with applications to polyelectrolytes

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A mathematical model based on the diffusion-convection equations is used to describe the rheological properties of dilute polymer solutions. The model uses a second-order conformation tensor as a measure of the internal strain; this avoids the mathematical complexity resulting from the use of a more detailed description of the macromolecules and also avoids the necessity of introducing additional ad-hoc assumptions (closure approximations) commonly used in other molecular theories. The rheological equation is obtained in terms of the rate-of-deformation tensor\(\dot \gamma \) and a scalar functionf(σ) relating the extra stress tensorσ to the internal strain tensorc. The functionf(σ) depends on the physical insight introduced in the Helmholtz free energyA(c) of the solvent-polymer system.

This approach is illustrated for an intra-molecular potential of a “FENE-charged” type. The concept of an isotropic, but conformation-dependent, friction coefficient, is also introduced to account for the “coil-stretch” transformation of macromolecules in solution. Viscosity and first normal-stress data, of partially hydrolyzed polyacrylamide solutions, (polyelectrolytes) are analyzed and compared to the model predictions in steady shear and elongational flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a 1,a 2,a 3 :

coefficients of eq. (22), eqs. (23b) and (c)

A(c) :

Helmholtz free energy function, eq. (19)

b :

extensibility parameter, eq. (23e)

c :

polymer concentration

c :

intramolecular strain or conformation tensor

e :

electrostatic parameter, eq. (23f)

E :

electrostatic constant, eq. (17)

f(σ):

scalar function defined in eq. (3)

G :

slip parameter

H :

connector modulus

I c :

1st invariant ofc, = trc

II c :

2nd invariant ofc, = trc · c

III c :

3rd invariant ofc, detc

k :

Boltzmann constant

M :

molecular weight

M W :

weight-average molecular weight

n :

number density of macromolecules

r :

position vector

R :

gas constant

R 0 :

maximum extension of the connector

R :

vector connecting two beads

S(c) :

entropy functional, eq. (18)

t :

time

T :

temperature

U(c) :

intramolecular potential, eq. (15)

U c (c):

Coulombic contribution toU(c), eq. (17)

U FENE(c):

FENE contribution toU (c), eq. (16)

V :

velocity vector

V i :

i th component ofV

Z(θ) :

scalar function defined by eq. (29)

β :

friction parameter, eq. (33)

δ :

unit tensor

\(\dot \varepsilon \) :

elongational rate

ϕ :

dimensionless shear stress

\(\dot \varepsilon \) :

shear rate

\(\dot \gamma _C \) :

critical shear rate

\(\dot \gamma \) :

rate-of-deformation tensor

η :

shear viscosity

η e :

elongational viscosity

η s :

solvent viscosity

η 0 :

zero-shear viscosity

η e0 :

zero-elongation viscosity

η e∞ :

high-elongational-rate viscosity

[η]0 :

zero-shear intrinsic viscosity

ψ(r, R,t):

configuration-space distribution function

ψ 1 :

1st normal-stress coefficient

ψ 2 :

2nd normal-stress coefficient

Λ :

dimensionless elongational stress, eq. (45)

λ e :

time constant for very dilute solutions, eq. (48)

λ E :

time constant for non-dilute solutions, eq. (50)

λ H :

time constant, eq. (32)

ξ :

reduced molecular extension, eq. (23 a)

ξ E :

reduced molecular extension at equilibrium, eq. (47)

σ :

extra-stress tensor

σ ij :

components of the extra-stress tensor

θ :

dimensionless 1. invariant of σ, eq. (23 d)

ζ (c):

variable friction coefficient, eq. (33)

ζ 0 :

isotropic friction coefficient

v :

velocity gradient tensor

v :

transpose of ∇v

\(\mathfrak{D}/\mathfrak{D}t\) :

upper-convected derivative (Oldroyd derivative)

D/Dt :

substantial derivative

References

  1. Ait-Kadi A, Carreau PJ, Chauveteau G (1987) J Rheology 31:537

    Google Scholar 

  2. Dunlap PN, Leal LG (1984) Rheol Acta 23:238

    Google Scholar 

  3. Bird RB, Dotson PJ, Johnson NL (1980) J Non-Newtonian Fluid Mech 7:213

    Google Scholar 

  4. de Gennes PG (1974) J Chem Phys 60:5030

    Google Scholar 

  5. Hinch EJ (1974) Colloques Internationaux du CNRS, No 233, p 241

    Google Scholar 

  6. Tanner RI (1975) Trans Soc Rheol 19:557

    Google Scholar 

  7. Grmela M (1986) Physica-D, 21D:179

    Google Scholar 

  8. Larson RG (1983) J Non-Newtonian Fluid Mech 13:279

    Google Scholar 

  9. Fuller CG, Leal LG (1980) Rheol Acta 19:580

    Google Scholar 

  10. Bird RB, Hassager O, Armstrong RC, Curtiss CF (1977) “Dynamics of Polymeric Liquids”, Vol 2, Kinetic Theory, John Wiley and Sons, New York

    Google Scholar 

  11. Giesekus H (1982) J Non-Newtonian Fluid Mech 11:69

    Google Scholar 

  12. Ait-Kadi A (1985) Ph.D thesis, Ecole Polytechnique of Montreal

  13. Olbricht WL, Rallison JM, Leal LG (1982) J Non-Newtonian Fluid Mech 10:291

    Google Scholar 

  14. Grmela M, Carreau PJ (1987) J Non-Newtonian Fluid Mech 23:271

    Google Scholar 

  15. Grmela M, Chhon Ly (1987) Phys Lett A 120:281

    Google Scholar 

  16. Carreau PJ, Grmela M (1986) “Modelling of the Rheological Behaviour of Polymeric Liquids” in: DeKee D, Kaloni PN (eds.) “Recent Advances in Structured Continua”, Pitman Publishing Company, chap. 4, p 105

  17. Morawetz H (1961) “Macromolecules in Solution”, Interscience Publishers, John Wiley and Sons, New York

    Google Scholar 

  18. Fan Xi-Jun, Bird RB, Renardy M (1985) J Non-Newtonian Fluid Mech 18:255

    Google Scholar 

  19. Phan-Thien N, Manero O, Leal LG (1984) Rheol Acta 23:151

    Google Scholar 

  20. Miles MJ, Tanaka K, Keller A (1983) Polymer 24:1081, as cited in [2]

    Google Scholar 

  21. Tsai CF, Darby R (1978) J Rheology 22:219

    Google Scholar 

  22. Choplin L (1980) Ph.D thesis, Ecole Polytechnique of Montreal

  23. Chang HF, Darby R (1983) J Rheology 27:77

    Google Scholar 

  24. Leonov AI (1976) Rheol Acta 15:85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ait-Kadi, A., Grmela, M. & Carreau, P.J. A rheological equation of state for dilute polymer solutions with applications to polyelectrolytes. Rheol Acta 27, 241–254 (1988). https://doi.org/10.1007/BF01329740

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01329740

Key words

Navigation