Skip to main content
Log in

Photosynthesis dependent acidification of perialgal vacuoles in theParamedum bursaria/Chlorella symbiosis: Visualization by monensin

  • Rapid Communication
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

After treatment with the carboxylic ionophore monensin theChlorella containing perialgal vacuoles of the “green”Paramecium bursaria swell. TheParamecium cells remain motile at this concentration for at least one day. The swelling is only observed in illuminated cells and can be inhibited by DCMU. We assume that during photosynthesis the perialgal vacuoles are acidified and that monensin exchanges H+ ions against monovalent cations (here K+). In consequence the osmotic value of the vacuoles increases. The proton gradient is believed to drive the transport of maltose from the symbiont into the host. Another but light independent effect of the monensin treatment is the swelling of peripheral alveoles of the ciliates, likewise indicating that the alveolar membrane contains an active proton pump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HEPES:

N-(2-hydroxyethyl)piperazine-N′-2-ethane sulfonic acid

DCMU:

3-(3, 4-dichlorophenyl)-1,1-dimethylurea

References

  • Boss WF (1984) Monensin-induced swelling of Golgi apparatus cisternae mediated by a proton gradient. Eur J Cell Biol 34: 1–8

    Google Scholar 

  • Cernichiari E, Muscatine L, Smith DC (1969) Maltose excretion by the symbiotic algae ofHydra viridis. Proc R Soc Lond [Biol] 173: 557–576

    Google Scholar 

  • Fischer A, Meindl D, Loos E (1989) Glucose excretion by the symbioticChlorella ofSpongilla fluviatilis. Planta 179: 251–256

    Google Scholar 

  • Geisow MJ, Burgoyne RD (1982) Effect of monensin on chromaffin cells and the mechanism of organelle swelling. Cell Biol Int Rep 6: 933–939

    Google Scholar 

  • Hohman TC, McNeil PL, Muscatine L (1982) Phagosome-lysome fusion inhibited by algal symbionts ofHydra viridis. J Cell Biol 94: 56–63

    Google Scholar 

  • Kessler E, Kauer G, Rahat M (1991) Excretion of sugars byChlorella species capable and incapable of symbiosis withHydra viridis. Bot Acta 104: 58–63

    Google Scholar 

  • Kleinig H, Sitte P (1986) Zellbiologie, 2nd edn. Fischer, Stuttgart

    Google Scholar 

  • Larsen J, Satir P (1991) Analysis of Ni2+-induced arrest ofParamecium axonemes. J Cell Sci 99: 33–40

    Google Scholar 

  • Matzke B, Schwarzmeier E, Loos E (1990) Maltose excretion by the symbioticChlorella of the helizoanAcanthocystis turfacae. Planta 181: 593–598

    Google Scholar 

  • Mollenhauer HH, Morré DJ, Droleskey R (1983) Monensin affects the trans half ofEuglena dictyosomes. Protoplasma 114: 119–124

    Google Scholar 

  • Muscatine L, Karakashian SJ, Karakashian MW (1967) Soluble extracellular products of algae symbiotic with a ciliate, a sponge and a mutantHydra. Comp Biochem Physiol 20: 1–12

    Google Scholar 

  • Pressmann BC (1976) Biological applications of ionophores. Annu Rev Biochem 45: 501–528

    Google Scholar 

  • Reisser W (1976) Die stoffwechselphysiologischen Beziehungen zwischenParamecium bursaria Ehrbg. undChlorella spec., in derParamecium bursaria-Symbiose. II. Symbiose-spezifische Merkmale der Stoffwechselphysiologie und der Cytologie des Symbioseverbandes und ihre Regulation. Arch Microbiol 111: 161–170

    Google Scholar 

  • — (1981) Theendosymbiontic unit ofStentor polymorphus andChlorella sp. Morphological and physiological studies. Protoplasma 105: 273–284

    Google Scholar 

  • — (1986) Endosymbiotic associations of freshwater protozoa and algae. Prog Protistol 1: 195–214

    Google Scholar 

  • — (1990) Participation of algal cell wall surface structures in the formation of the host-symbiont-interface of endocytobiotic systems. Exp Phycol 1: 55–68

    Google Scholar 

  • Sandeaux R, Sandeaux J, Gavach C, Bernhard B (1982) Transport of Na+ by monensin across biomolecular lipid membranes. Biochim Biophys Acta 684: 127–132

    Google Scholar 

  • Smith DC, Douglas AE (1987) The biology of symbiosis. E Arnold, London

    Google Scholar 

  • Stelly N, Mauger J-P, Claret M, Adoutte A (1991) Cortical alveoli ofParamecium: a vast submembraneous calcium storage compartment. J Cell Biol 113: 103–112

    Google Scholar 

  • Tartakoff AM (1983) Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell 32: 1026–1028

    Google Scholar 

  • —, Vassalli P (1981) Plasma cell endocytosis: is it related to immunoglobulin secretion? Eur J Cell Biol 26: 188–197

    Google Scholar 

  • Willenbrink J (1987) Die pflanzliche Vacuole als Speicher. Naturwissenschaften 74: 22–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schüßler, A., Schnepf, E. Photosynthesis dependent acidification of perialgal vacuoles in theParamedum bursaria/Chlorella symbiosis: Visualization by monensin. Protoplasma 166, 218–222 (1992). https://doi.org/10.1007/BF01322784

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01322784

Keywords

Navigation