Skip to main content
Log in

The flagellar developmental cycle in algae

Two types of flagellar development in uniflagellated algae

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Flagellar development during cell division was studied by light microscopy in three taxa of uniflagellated algae,Pedinomonas tuberculata (Chlorophyta),Monomastix spec. (Chlorophyta), andPseudopedinella elastica (Chromophyta). As shown by electron microscopy during interphaseM. spec, andP. elastica contain a mature, non-functional second basal body, andP. tuberculata contains an immature (i.e., shorter) non-functional second basal body. Two different types of flagellar development were observed in the three taxa: inP. tuberculata the parental flagellum is transferred to one of the progeny cells, whereas the other progeny cell receives a newly formed flagellum that grows from the second non-functional basal body. InM. spec. andP. elastica the parental flagellum is either completely retracted (P. elastica) or partially retracted and autotomized (M. spec); each dividing cell develops two new flagella (from two newly formed basal bodies) which are distributed to the two progeny cells. The uniflagellated condition in algae can thus be attained by two completely different mechanisms: a non-functional second basal body is either the younger (no. 2; inP. tuberculata and otherChlorophyta) or the older (no. 1; inP. elastica and presumably otherChromophyta) of the two basal bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beech PL, Wetherbee R, Pickett-Heaps JD (1988) Transformation of the flagella and associated flagellar components during cell division in the coccolithophoridPleurochrysis carterae. Protoplasma 145: 37–46

    Google Scholar 

  • Beech PL, Wetherbee R (1990) Direct observations on flagellar transformation inMallomonas splendens (Synurophyceae). J Phycol (in press)

  • Belcher JH (1965) An investigation of three clones ofMonomastix Scherffel by light microscopy. Nova Hedwigia 9: 73–82

    Google Scholar 

  • Ettl H (1983) Chlorophyta I. Phytomonadina. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa. G Fischer, Stuttgart

    Google Scholar 

  • —, Manton I (1964) Die feinere Struktur vonPedinomonas minor Korschikoff. Nova Hedwigia 8: 421–451

    Google Scholar 

  • Farmer MA, Triemer RE (1988) Flagellar systems in the euglenoid flagellates. BioSystems 21: 283–291

    Google Scholar 

  • Gaffal KP (1988) The basal body-root complex ofChlamydomonas reinhardtii during mitosis. Protoplasma 143: 118–129

    Google Scholar 

  • Heimann K, Reize IB, Melkonian M (1989) The flagellar developmental cycle in algae: flagellar transformation inCyanophora paradoxa (Glaucocystophyceae). Protoplasma 148: 106–110

    Google Scholar 

  • Manton I (1967) Electron microscopical observations on a clone ofMonomastix Scherffel in culture. Nova Hedwigia 14: 1–11

    Google Scholar 

  • —, Parke M (1960) Further observations on small green flagellates with special reference to possible relatives ofChromulina pusilla Butcher. J Mar Biol Assoc UK 39: 275–298

    Google Scholar 

  • —, von Stosch A (1966) Observations on the fine structure of the male gamete of the marine centric diatomLithodesmium undulatum. J R Microsc Soc 85: 119–134

    Google Scholar 

  • Mattox KR, Stewart KD (1984) Classification of the green algae: a concept based on comparative cytology. In: Irvine DEG, John DM (eds) The systematics of green algae. Academic Press, New York, 29–72

    Google Scholar 

  • McFadden GI, Melkonian M (1986) Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 25: 551–557

    Google Scholar 

  • Melkonian M (1975) The fine structure of the zoospores ofFritschiella tuberosa Iyeng. (Chaetophorineae, Chlorophyceae) with special reference to the flagellar apparatus. Protoplasma 86: 391–404

    Google Scholar 

  • — (1982) Effect of divalent cations on flagellar scales in the green flagellateTetraselmis cordiformis. Protoplasma 111: 221–233

    Google Scholar 

  • — (1990) Pedinomonadales. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of protoctista. Jones & Bartlett, Boston (in press)

    Google Scholar 

  • —, Reize IB, Preisig HR (1987) Maturation of a flagellum/basal body requires more than one cell cycle in algal flagellates: studies onNephroselmis olivacea (Prasinophyceae). In: Wiessner W, Robinson DG, Starr RC (eds) Algal development. Molecular and cellular aspects. Springer, Berlin Heidelberg New York Tokyo, pp 102–113

    Google Scholar 

  • Moestrup Ø (1982) Flagellar structure in algae: a review with new observations particularly on the Chrysophyceae, Phaeophyceae (Fucophyceae), Euglenophyceae andReckertia. Phycologia 21: 427–528

    Google Scholar 

  • —, Hori T (1989) Ultrastructure of the flagellar apparatus inPyramimonas octopus (Prasinophyceae). II. Flagellar roots, connecting fibers, and numbering of individual flagella in green algae. Protoplasma 148: 41–56

    Google Scholar 

  • Norris RE (1980) Prasinophytes. In: Cox ER (ed) Developments in mavine biology, vol 2, phytoflagellates. Elsevier-North Holland, New York, 85–145

    Google Scholar 

  • Pickett-Heaps JD, Ott DW (1974) Ultrastructural morphology and cell division inPedinomonas. Cytobios 11: 41–58

    Google Scholar 

  • Quader H, Glas R (1984) Geißelregeneration beiChlamydomonas reinhardtii. BiuZ 14: 125–127

    Google Scholar 

  • Reize IB, Melkonian M (1989) A new way to investigate living flagellated/ciliated cells in the light microscope: immobilization of cells in agarose. Botanica Acta 102: 145–151

    Google Scholar 

  • Schlösser UG (1984) Sammlung von Algenkulturen Göttingen: additions to the collection since 1982. Ber Deutsch Bot Ges 97: 465–475

    Google Scholar 

  • Sleigh MA (1988) Flagellar root maps allow speculative comparisons of root patterns and of their ontogeny. BioSystems 21: 277–282

    Google Scholar 

  • Wetherbee R, Platt SJ, Beech PL, Pickett-Heaps JD (1988) Flagellar transformation in the heterokontEpipyxis pulchra (Chrysophyceae): direct observation using image enhanced light microscopy. Protoplasma 145: 47–54

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heimann, K., Benting, J., Timmermann, S. et al. The flagellar developmental cycle in algae. Protoplasma 153, 14–23 (1989). https://doi.org/10.1007/BF01322460

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01322460

Keywords

Navigation