Skip to main content
Log in

Apoptosis of cells lacking mitochondrial DNA

  • Papers
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The mitochondrial genome of animals encodes a few subcomponents of the respiratory chain complexes I, III and IV, whereas nuclear DNA encodes the overwhelming majority, both in quantitative and qualitative terms, of mitochondrial proteins. Complete depletion of mitochondrial DNA (mtDNA) can be achieved by culturing cells in the presence of inhibitors of mtDNA replication or mitochondrial protein synthesis, giving rise to mutant cells (ϱ∘ cells) which carry morphological near-to-intact mitochondria with respiratory defects. Such cells can be used to study the impact of mitochondrial respiration on apoptosis. ϱ∘ cells do not undergo cell death in response to determined stimuli, yet they conserve their potential to undergo full-blown apoptosis in many experimental systems. This indicates that mtDNA and associated functions (in particular mitochondrial respiration) are irrelevant to apoptosis execution. However, the finding that mtDNA-deficient mitochondria can undergo apoptosis does not argue against the involvement of mitochondria in the apoptotic process, since mitochondria from ϱ∘ cells conserve most of their functions including those involved in the execution of the death programme: permeability transition and release of one or several intermembrane proteins causing nuclear apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barr PJ, Tomei LD. Apoptosis and its role in human disease.Biotechnol 1994;12: 487–493.

    Article  CAS  Google Scholar 

  2. Thompson CB. Apoptosis in the pathogenesis and treatment of disease.Science 1995;267: 1456–1462.

    PubMed  CAS  Google Scholar 

  3. Kroemer G, Petit PX, Zamzami N, Vayssière J-L, Mignotte B. The biochemistry of apoptosis.FASEB J 1995;9: 1277–1287.

    PubMed  CAS  Google Scholar 

  4. Kroemer G. The pharmacology of T cell apoptosis.Adv Immunol 1995;58: 211–296.

    Article  PubMed  CAS  Google Scholar 

  5. Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis.Immunol Today 1996; in press.

  6. Ishizaki Y, Cheng L, Mudge AW, Raff MC. Programmed cell death by default in embryonic cells, fibroblasts, and cancer cells.Mol Biol Cell 1995;1995: 1443–1458.

    Google Scholar 

  7. Weil M, Jacobson MD, Coles HSR,et al. Constitutive expression of the machinery for programme cell death.J Cell Biol 1996;133: 1053–1059.

    Article  PubMed  CAS  Google Scholar 

  8. Jacobson MD, Burne JF, Raff MC. Programmed cell death and Bcl-2 protection in the absence of a nucleus.EMBO J 1994;13: 1899–1910.

    PubMed  CAS  Google Scholar 

  9. Schulze-Osthoff K, Walczak H, Droge W, Krammer PH. Cell nucleus and DNA fragmentation are not required for apoptosis.J Cell Biol 1994;127: 15–20.

    Article  PubMed  CAS  Google Scholar 

  10. Nakajima H, Golstein P, Henkart PA. The target cell nucleus is not required for cell-mediated granzyme- or Fas-based cytotoxicity.J Exp Med 1995;181: 1905–1909.

    Article  PubMed  CAS  Google Scholar 

  11. Borst P, Grivell LA, Groot GSP. Organelle DNA.Trends Biochem Sci 1984;9: 128–130.

    Article  Google Scholar 

  12. Gray MW. Origin and evolution of mitochondrial DNA.Annu Rev Biochem 1989;5: 25–50.

    CAS  Google Scholar 

  13. Schatz G, Dobberstein B. Common principles of protein translocation across membranes.Science 1996;271: 1519–1526.

    PubMed  CAS  Google Scholar 

  14. King MP, Attardi G. Isolation of human cell lines lacking mitochondrial DNA.Meth Enzymol 1996;264: 304–313.

    PubMed  CAS  Google Scholar 

  15. Baixeras E, Bosca L, Stauber C,et al. From apoptosis to autoimmunity: Insights from the signaling pathways leading to proliferation or to programmed cell death.Immunol Rev 1994;142: 53–91.

    Article  PubMed  CAS  Google Scholar 

  16. Skowronek P, Haferkamp O, Rödel G. A fluorescence-microscopic and flow-cytometric study of HELA cells with an experimentally induced respiratory deficiency.Biochem Biophys Res Comm 1992;187: 991–998.

    Article  PubMed  CAS  Google Scholar 

  17. Marchetti P, Susin SA, Decaudin D,et al. Apoptosis-associated derangement of mitochondrial function in cells lacking mitochondrial DNA.Cancer Res 1996;56: 2033–2038.

    PubMed  CAS  Google Scholar 

  18. King M, Attardi G. Mityochondria-mediated transformation of human rho∘ cells.Meth Enzymol 1996;264: 313–320.

    Article  PubMed  CAS  Google Scholar 

  19. Schulze-Osthoff K, Bakker AC, Vanhaesbroeck B, Beyaert R, Jacob WA, Fiers W. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions.J Biol Chem 1992;267: 5317–5323.

    PubMed  CAS  Google Scholar 

  20. Schulze-Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, Fiers W. Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF.EMBO J 1993;12: 3095–3104.

    PubMed  CAS  Google Scholar 

  21. Hennet T, Richter C, Peterhans E. Tumour necrosis factoralpha induces Superoxide anion production in mitochondria of L929 cells.Biochem J 1993;289: 587–592.

    PubMed  CAS  Google Scholar 

  22. Schulze-Osthoff K, Krammer PH, Dröge W. Divergent signalling via APO-1/Fas and the TNF receptor, two homologous molecules involved in physiological cell death.EMBO J 1994;13: 4587–4596.

    PubMed  CAS  Google Scholar 

  23. Jacobson MD, Burne JF, King MP, Miyashita T, Reed JC, Raff MC. Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA.Nature 1993;361: 365–369.

    Article  PubMed  CAS  Google Scholar 

  24. Gamen S, Anel A, Montoya J, Marzo I, Piñeiro A, Naval J. mtDNA-depleted U937 cells are sensitive to TNF and Fasmediated cytotoxicity.FEBS Lett 1995;376: 15–18.

    Article  PubMed  CAS  Google Scholar 

  25. Wolvetang EJ, Johnson KL, Krauer K, Ralph SJ, Linnane AW. Mitochondrial respiratory chain inhibitors induce apoptosis.FEBS Lett 1994;339: 40–44.

    Article  PubMed  CAS  Google Scholar 

  26. Shimizu S, Eguchi Y, Kosaka H, Kamlike W, Matsuda H, Tsujimoto Y. Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL.Nature 1995;374: 811–813.

    Article  PubMed  CAS  Google Scholar 

  27. Yoneda M, Kasumata K, Hayakawa M, Tanaka M, Ozawa T Oxygen stress induces an apoptotic cell death associated with fragmentation of mitochondrial genome.Biochem Biophys Res Comm 1995;209: 723–729.

    Article  PubMed  CAS  Google Scholar 

  28. McLauglin KA, Osborne BA, Goldsby RA. The role of oxygen in thymocyte apoptosis.Eur J Immunol 1996;26: 1170–1174.

    Google Scholar 

  29. Jacobson MD, Raff MC. Programmed cell death and Bcl-2 protection in very low oxygen.Nature 1995;374: 814–816.

    Article  PubMed  CAS  Google Scholar 

  30. Hug H, Enari M, Nagata S. No requirement of reactive oxygen intermediates in Fas-mediated apoptosis.FEBS Lett 1994;351: 311–313.

    Article  PubMed  CAS  Google Scholar 

  31. Greenhalf W, Stephan C, Chaudhuri B. Role of mitochondria and C-terminal membrane anchor of Bcl-2 in Bax induced growth arrest and mortality inSacharomyces cerevisiae. FEBS Lett 1996;380: 169–175.

    Article  PubMed  CAS  Google Scholar 

  32. Tepper CG, Studzinski GP. Teniposide induces nuclear but not mitochondrial DNA degradation.Cancer Res 1992;52: 3384–3390.

    PubMed  CAS  Google Scholar 

  33. Tepper CG, Studzinski GP. Resistance of mitochondrial DNA to degradation characterizes the apoptotic but not the necrotic mode of human leukemia cell death.J Cell Biochem 1993;52: 352–361.

    Article  PubMed  CAS  Google Scholar 

  34. Vayssière J-L, Petit PX, Risler Y, Mignotte B. Commitment to apoptosis is associated with changes in mitochondrial biogenesis and activity in cell lines conditionally immortalized with simian virus 40.Proc Natl Acad Sci USA 1994;91: 11752–11756.

    Article  PubMed  Google Scholar 

  35. Zamzami N, Marchetti P, Castedo M,et al. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte deathin vivo. J Exp Med 1995;181: 1661–1672.

    Article  PubMed  CAS  Google Scholar 

  36. Petit PX, LeCoeur H, Zorn E, Dauguet C, Mignotte B, Gougeon ML. Alterations of mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis.J Cell Biol 1995;130: 157–167.

    Article  PubMed  CAS  Google Scholar 

  37. Zamzami N, Marchetti P, Castedo M,et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death.J Exp Med 1995;182: 367–377.

    Article  PubMed  CAS  Google Scholar 

  38. Castedo M, Macho A, Zamzami N,et al. Mitochondrial perturbations define lymphocytes undergoing apoptotic depletionin vivo. EurJ Immunol 1995;25: 3277–3284.

    CAS  Google Scholar 

  39. Castedo M, Hirsch T, Susin SA,et al. Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis.J Immunol 1996;157: 512–521.

    PubMed  CAS  Google Scholar 

  40. Marchetti P, Castedo M, Susin SA,et al. Mitochondrial permeability transition is a central coordinating event of apoptosis.J Exp Med 1996; in press, Sept.

  41. Macho A, Decaudin D, Castedo M,et al. Chloromethyl-Xrosamine — An aldehyde-fixable potential-sensitive fluorochrome for the detection of early apoptosis.Cytometry 1996; in press.

  42. Attardi G, Schatz G. Biogenesis of mitochondria.Ann Rev Cell Biol 1988;4: 289–333.

    PubMed  CAS  Google Scholar 

  43. Osborne BA, Smith SW, Liu Z-G, McLaughlin KA, Grimm L, Schwanz LM. Identification of genes induced during apoptosis in T cells.Immunol Rev 1994;142: 301–320.

    Article  PubMed  CAS  Google Scholar 

  44. Zoratti M, Szabò I. The mitochondrial permeability transition.Biochem Biophys Acta — Rev Biomembr 1995;1241: 139–176.

    Google Scholar 

  45. Bernardi P, Petronilli V. The permeability transition pore as a mitochondrial calcium release channel; a critical appraisal.J Bioenerg Biomembr 1996;28: 129–136.

    Article  Google Scholar 

  46. Zamzami N, Marchetti P, Castedo M,et al. Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis.FEBS Lett 1996;384: 53–57.

    Article  PubMed  CAS  Google Scholar 

  47. Marchetti P, Hirsch T, Zamzami N,et al. Mitochondrial permeability transition triggers lymphocyte apoptosis.J Immunol 1996; in press.

  48. Zamzami N, Susin SA, Marchetti P,et al. Mitochondrial control of nuclear apoptosis.J Exp Med 1996;183: 1533–1544.

    Article  PubMed  CAS  Google Scholar 

  49. Susin S, Zamzami N, Castedo M,et al. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease.J Exp Med 1996;184: 1331–1342.

    Article  PubMed  CAS  Google Scholar 

  50. Martin SJ, Newmeyer DD, Mathisa S,et al. Cell-free reconstitution of Fas-, UV radiation- and ceramide-induced apoptosis.EMBO J 1995;14: 5191–5200.

    PubMed  CAS  Google Scholar 

  51. Liu X, Kim CN, Yang I, Jemmerson R, Wang X. Induction of apoptic program in cell-free extracts: requirement for dATP and cytochrome C.Cell 1996;86: 147–157.

    Article  PubMed  CAS  Google Scholar 

  52. Fearnhead HO, Dinsdale D, Cohen GM. An interleukin-1 beta-converting enzyme-like protease is a common mediator of apoptosis in thymocytes.FEBS Lett 1995;375: 283–288.

    Article  PubMed  CAS  Google Scholar 

  53. Zhu HJ, Fearnhead HO, Cohen GM. An ICE-like protease is a common mediator of apoptosis induced by diverse stimuli in human monocytic THP.1 cells.FEBS Lett 1995;374: 303–308.

    Article  PubMed  CAS  Google Scholar 

  54. Cain K, Inayathussain SH, Couet C, Cohen GM. A cleavage-site-directed inhibitor of interleukin 1 beta-converting enzyme-like proteases inhibits apoptosis in primary cultures of rat hepatocytes.Biochem J 1996;314: 27–32.

    PubMed  CAS  Google Scholar 

  55. Slee EA, Zhu HJ, Chow SC, Macfarlane M, Nicholson DW, Cohen GM. Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.fmk) inhibits apoptosis by blocking the processing of CPP32 Biochem J 1996;315 21–24.

    PubMed  CAS  Google Scholar 

  56. Pronk GJ, Ramer K,Amiri P, Williams LT. Requirement of an ICE-like protease for induction of apoptosis and ceramide generation by REAPER.Science 1996;271: 808–810.

    PubMed  CAS  Google Scholar 

  57. Jacobson MD, Weil M, Raff MC. Role of Ced-3IICE-family proteases in staurosporine-induced programmed cell death.J Cell Biol 1996;133: 1041–1051.

    Article  CAS  Google Scholar 

  58. Bernardi P, Broekemeier KM, Pfeiffer DR. Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane.J Bioenerg Biomembr 1994;26: 509–517.

    Article  PubMed  CAS  Google Scholar 

  59. Brandolin G, Le-Saux A, Trezeguet V, Lauquinn GJ, Vignais PV.Chemical, immunological, enzymatic, and genetic approaches to studying the arrangement of the peptide chain of the ADPIATP carrier in the mitochondrial membrane.J Bioenerg Biomembr 1993;25: 493–501.

    Article  Google Scholar 

  60. Gamen S, Marzo S, Anel A, Piñeiro A, Naval J. CPP32 inhibition prevents Fas-induced ceramide generation and apoptosis in human cells.FEBS Lett 1996;390: 233–237.

    Article  CAS  Google Scholar 

  61. Newmeyer DD, Farschon DM, Reed JC. Cell-free apoptosis in xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria.Cell 1994;79: 353–364.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by ARC, ANRS, CNRS, FRM, Fondation de France, INSERM, NATO, Ligue contre le Cancer Ministère de la Recherche et de l'Industrie (France), and Sidaction (to GK). SAS receives a fellowship from the Spanish Government (Ministerio de Ciencia y Educación).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchetti, P., Zamzami, N., Susin, S.A. et al. Apoptosis of cells lacking mitochondrial DNA. Apoptosis 1, 119–125 (1996). https://doi.org/10.1007/BF01321017

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01321017

Key words

Navigation