Skip to main content
Log in

Interannual variability in the spring phytoplankton bloom in Auke Bay, Alaska

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Data on phytoplankton primary production, biomass, and species composition were collected during a 5 yr (1985–1989) study of Auke Bay, Alaska. The data were used to examine the interannual differences in the timing, duration, and magnitude of the spring phytoplankton blooms during each year and to relate these differences to interannual variations in weather patterns. Within any given year, a pre-bloom phase was characterized by low available light, low rates of primary production, low biomass, and predominantly small (<10µm) diatoms. During the primary bloom, integrated production rates rose to 4 to 4.5 g C m−2 d−1, and integrated biomass levels reached 415 to 972 mg chlorophyll m−2. Primary blooms were usually dominated by large diatoms (Thalassiosira spp.), and in a single year (1989) byChaetoceros spp. The primary blooms terminated upon nutrient depletion in the euphotic zone. Secondary blooms, triggered by nutrient resupply from below, occurred sporadically after the primary bloom and accounted for 4 to 31% of total spring production. The date of initiation and the duration of the primary bloom varied little from year to year (standard deviation 3 and 5 d, respectively). Seasonal production rates and biomass levels varied interannually by a factor of 2 to 3. In contrast, intra-annual variations of more than an order of magnitude, especially in biomass, occurred over periods as short as 10 d. These large variations over short time periods indicate the importance of synchronous timing between spring blooms and the production of larval fish and shellfish, which depend on an appropriate and adequate food supply for growth and survival. Parameters describing primary production (e.g. peak daily production, mean daily production, and total production during the primary bloom and the entire season) exhibited little interannual variation (coefficient of variation, CV = 10 to 19%), but a large degree of intra-annual variation (CV = 77 to 116%). Similarly, interannual variations in biomass (peak chlorophyll, mean chlorophyll) were also lower (CV = 20 to 33%) than intra-annual variations (CV = 85 to 120%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Anderson, G. C., Lam, R. K., Booth, B. C., Glass, J. M. (1977). A description and numerical analysis of the factors affecting the processes of production in the Gulf of Alaska: final report. Research Unit 58. In: Environmental Assessment of the Alaskan Continental Shelf, Annual Reports of Principal Investigators for the year ending March 1977. Vol. 7. National Oceanic and Atmospheric Administration, Anchorage, Alaska, p. 477–798

    Google Scholar 

  • Armstrong, F. A. J., Stearns, C. R., Strickland, J. D. H. (1967). Measurement of upwelling and subsequent biological processes by means of the Technicon AutoAnalyzer and associated equipment. Deep-Sea Res. 14: 381–389

    Google Scholar 

  • Beattie, W. D. (1984). Physical and chemical regulation of primary production: spring blooms in Tenakee Inlet, Alaska. M.S. thesis. University of Alaska, Juneau, Alaska

    Google Scholar 

  • Berman, T., Williams, P. J. LeB. (1972). Notes on the methodology of the radiocarbon technique in studying algal productivity. Prog. Rep. Scripps Instn Oceanogr. (Univ. Calif. Inst. mar. Res. Fd Chain Res. Grp) 37–40

  • Bienfang, P. K., Szyper, J. P., Okamoto, M. Y., Noda, E. K. (1984). Temporal and spatial variability of phytoplankton in a subtropical ecosystem. Limnol. Oceanogr. 29: 527–539

    Google Scholar 

  • Cohen, E. B., Grosslein, M. D., Sissenwine, M. P., Steimle, F., Wright, W. R. (1982). Energy budget of Georges Bank. Spec. Publs Can. Fish. aquat. Sciences 59: 95–107

    Google Scholar 

  • Corkett, C. J., McLaren, I. A. (1978). The biology ofPseudocalanus. Adv. mar. Biol. 15: 1–231

    Google Scholar 

  • Coyle, K. O., Paul, A. J. (1990). Interannual variations in zooplankton population and biomass during the spring bloom in an Alaskan subarctic environment. In: Ziemann, D. A., Fulton-Bennett, K. W. (eds.) APPRISE — Interannual variability and fisheries recruitment. The Oceanic Institute, Waimanalo, Hawaii, p. 179–228

    Google Scholar 

  • Cushing, D. H. (1969). The regularity of the spawning season of some fishes. J. Cons. int. Explor. Mer 33: 81–92

    Google Scholar 

  • Dagg, M. J., Turner, J. T. (1982). The impact of copepod grazing on the phytoplankton of Georges Bank and the New York Bight. Can. J. Fish. aquat. Sciences 39: 979–990

    Google Scholar 

  • Forst, B. W. (1985). Food limitation of the planktonic marine copepodsCalanus pacificus andPseudocalanus sp. in a temperate fjord. Arch. Hydrobiol. (Beih. Ergebn. Limnol.) 2: 1–13

    Google Scholar 

  • Gieskes, W. W., Kraay, G. W. (1975). The phytoplankton spring bloom in Dutch coastal waters of the North Sea. Neth. J. Sea Res. 9: 166–196

    Google Scholar 

  • Hager, F. W., Gordon, L. I., Park, J. K. (1968). A practical manual for the use of the Technicon AutoAnalyzer in seawater nutrient analysis. Tech. Rep. Dep. Oceanogr. Ore. St. Univ., Corvallis 68-33: 1–33

    Google Scholar 

  • Haldorson, L., Pritchett, M., Sterrit, D., Watts, J. (1990). Interannual variability in the recruitment potential of larval fishes in Auke Bay, Alaska. In: Ziemann, D. A., Fulton-Bennett, K. W. (eds.) APPRISE — Interannual variability and fisheries recruitment. The Oceanic Institute, Waimanalo, Hawaii, p. 319–356

    Google Scholar 

  • Hasle, G. R. (1978). The inverted microscope method. Phytoplankton manual. Monogr. oceanogr. Methodol. (UNESCO) 6: 88–96

    Google Scholar 

  • Hitchcock, G. L., Smayda, J. (1977). The importance of light in the initiation of the 1972–1973 winter-spring diatom bloom in Narragansett Bay. Limnol. Oceanogr. 22: 126–131

    Google Scholar 

  • Holm-Hansen, O., Lorenzen, C. J., Holmes, P. E., Strickland, J. D. H. (1965). Fluorometric determination of chlorophyll. J. Cons. perm. int. Explor. Mer 30: 3–15

    Google Scholar 

  • Hood, D. W., Zimmerman, S. T. (eds.) (1986). The Gulf of Alaska — physical environment and biological resources. U.S. Department of Commerce (NOAA) and U.S. Department of the Interior (Minerals Management Service), Juneau, Alaska

    Google Scholar 

  • Iverson, R. L., Bittaker, H. F., Meyers, V. B. (1976). Loss of radiocarbon in direct use of Aquasol for liquid scintillation counting of solutions containing14C-NaHCO3. Limnol. Oceanogr. 21: 756–758

    Google Scholar 

  • Iverson, R. L., Curl, H. C., Jr., Connors, H. B., Jr., Kirk, D. K., Zakov, K. (1974). Summer phytoplankton blooms in Auke Bay, Alaska, driven by wind mixing of the water column. Limnol. Oceanogr. 19: 271–278

    Google Scholar 

  • Jones, B. H., Brink, K. H., Dugdale, R. C., Stuart, D. W., Van Leer, J. C., Blasco, D., Kelly, J. C. (1983). Observation of a persistent upwelling center off Point Conception, California. In: Suess, E., Thiede, T. (eds.) Coastal upwelling: its sediment record. Plenum Press, New York, p. 37–60

    Google Scholar 

  • Kanda, J., Ziemann, D. A. Conquest, L. D., Bienfang, P. K. (1989). Light-dependency of nitrate uptake by phytoplankton over the spring bloom in Auke Bay, Alaska. Mar. Biol. 103: 563–569

    Google Scholar 

  • Lancelot, C., Mathot, S. (1987). Dynamics of aPhaeocystis-dominated spring bloom in Belgian coastal waters. I. Phytoplanktonic activities and related parameters. Mar. Ecol. Prog. Ser. 37: 239–248

    Google Scholar 

  • Lännergren, C., Skjoldal, H. R. (1975). The spring phytoplankton bloom in Lindaspollene, a land-locked Norwegian fjord. Autotrophic and heterotrophic activities in relation to nutrients. Proc. 10th Eur. mar. Biol. Symp. 2: 363–391 [Persoone, G., Jaspers, E. (eds.) Universa Press, Wetteren, Belgium]

    Google Scholar 

  • Lean, D. R. S., Burnison, B. K. (1979). An evaluation of errors in the14C method of primary product measurement. Limnol. Oceanogr. 24: 917–928

    Google Scholar 

  • MacIsaac, J. J., Dugdale, R. C., Barber, R. T., Blasco, D., Packard, T. T. (1985). Primary production cycle in an upwelling center. Deep-Sea Res. 32: 503–529

    Google Scholar 

  • Mandelli, E. F., Burkholder, P. R., Doheny, T. E., Brody, R. (1970). Studies of primary productivity in coastal waters of southern Long Island, New York. Mar. Biol. 7: 153–160

    Google Scholar 

  • Murphy, J., Riley, J. P. (1962). A modified simple solution method for the determination of phosphate in natural waters. Analyt. chim. Acta 27: 31–36

    Google Scholar 

  • National Oceanic and Atmospheric Administration (1986–1989). Local climatological data — monthly summary (for Juneau, Alaska). National Climatic Data Center, Asheville, North Carolina, USA

    Google Scholar 

  • Parsons, T., Takahashi, M., Hargrave, B. (1984). Biological oceanographic processes. Pergamon Press, New York

    Google Scholar 

  • Paul, A. J., Paul, J. M., Coyle, K. O. (1989). Energy sources for first-feeding zoeae of king crabParalithodes camtschatica (Tilesius) (Decapoda, Lithodidae). J. exp. mar. Biol. Ecol. 130: 55–69

    Google Scholar 

  • Peinert, R., Saure, A., Stegmann, P., Stienen, C., Haardt, H. (1982). Dynamics of primary production and sedimentation in a coastal ecosystem. Neth. J. Sea Res. 16: 276–289

    Google Scholar 

  • Pingree, R. D., Holligan, P. M., Mardell, G. T., Head, R. N. (1976). The influence of physical stability on spring, summer and autumn phytoplankton bloom in the Celtic Sea. J. mar. biol. Ass. U.K. 56: 845–873

    Google Scholar 

  • Radach, G., Berg, J., Heinemann, G., Krause, M. (1984). On the relation of primary production to grazing during the Fladen Ground Experiment 1976 (Flex '76). In: Fasham, M. J. R. (ed.) Flow of energy and materials in marine ecosystems. Theory and practice. Plenum Press, New York, p. 597–625

    Google Scholar 

  • Riley, G. A. (1957). Phytoplankton of the North Central Sargasso Sea, 1950–1952. Limnol. Oceanogr. 2: 252–270

    Google Scholar 

  • Riley, G. A. (1967). The plankton of estuaries. Publs Am. Ass. Advmt Sci 83: 316–326

    Google Scholar 

  • Sambrotto, R. N., Goering, J. J., McRoy, C. P. (1984). Large yearly production of phytoplankton in the Western Bering Strait. Science, N.Y. 225: 1145–1150

    Google Scholar 

  • Sambrotto, R. N., Niebauer, H. J., Goering, J. J., Iverson, R. L. (1986). Relationships among vertical mixing, nitrate uptake, and phytoplankton growth during the spring bloom in the southeast Bering Sea middle shelf. Contin. Shelf Res. 5: 161–198

    Google Scholar 

  • Smetacek, V. (1985). The annual cycle of Kiel Bight plankton: a long term analysis. Estuaries 8: 145–157

    Google Scholar 

  • Solórzano, L. (1969). Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14: 799–801

    Google Scholar 

  • Strickland, J. D. H., Parsons, T. R. (1972). A practical handbook of seawater analysis. 2nd ed. Bull. Fish. Res. Bd Can. 167: 1–310

    Google Scholar 

  • Sverdrup, H. U. (1953). On conditions for the vernal blooming of phytoplankton. J. Cons. perm. int. Explor. Mer 18: 287–295

    Google Scholar 

  • Technicon Inc. (1977). Nitrate and nitrite in water and seawater. Technicon, Inc., Tarrytown, New York (Indusrial Method No. 158)

    Google Scholar 

  • Townsend, D. W., Spinrad, R. W. (1986). Early spring phytoplankton blooms in the Gulf of Maine. Contin. Shelf Res. 6: 151–529

    Google Scholar 

  • Utermöhl, H. (1958). Zur Verfollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Verein. theor. angew. Limnol. 9: 1–38

    Google Scholar 

  • Wassman, P., Aadnesen, A. (1984). Hydrography, nutrients, suspended organic matter, and primary production in a shallow fjord system on the west coast of Norway. Sarsia 69: 139–153

    Google Scholar 

  • Wilkerson, F. P., Dugdale, R. C. (1987). The use of large shipboard barrels and drifters to study the effects of coastal upwelling of phytoplankton nutrient dynamics. Limnol. Oceanogr. 32: 368–382

    Google Scholar 

  • Williamson, R. S. (1978). Phytoplankton and productivity in Auke Bay, Alaska. NOAA/NMFS Auke Bay Laboratory, Juneau, Alaska (Manuscr. Rep., File No. 157).

    Google Scholar 

  • Winter, D. F., Banse, K., Anderson, G. C. (1975). The dynamics of phytoplankton blooms in Puget Sound, a fjord in the northwestern United States. Mar. Biol. 29: 139–176

    Google Scholar 

  • Wroblewski, J. S., Richman, J. C. (1987). The non-linear response of plankton to wind mixing events — implications for survival of larval northern anchovy. J. Plankton Res. 9: 103–123

    Google Scholar 

  • Ziemann, D. A., Conquest, L. D., Fulton-Bennett, K. W., Bienfang, P. K. (1990a). Interannual variability in the physical environment of Auke Bay, Alaska. In: Ziemann, D. A., Fulton-Bennett, K. W. (eds.) APPRISE — Interannual variability and fisheries recruitment. The Oceanic Institute, Waimanalo, Hawaii, p. 99–128

    Google Scholar 

  • Ziemann, D. A., Conquest, L. D., Fulton-Bennett, K. W., Bienfang, P. K: (1990b). Interannual variability in the Auke Bay Phytoplankton. In: Ziemann, D. A. Fulton-Bennett, K. W. (eds.) APPRISE — Interannual variability and fisheries recruitment. The Oceanic Institute, Waimanalo, Hawaii, p. 129–170

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. G. Hadfield, Honolulu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziemann, D.A., Conquest, L.D., Olaizola, M. et al. Interannual variability in the spring phytoplankton bloom in Auke Bay, Alaska. Mar. Biol. 109, 321–334 (1991). https://doi.org/10.1007/BF01319400

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01319400

Keywords

Navigation