Skip to main content
Log in

Provirus tagging as an instrument to identify oncogenes and to establish synergism between oncogenes

  • Brief Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary

Insertional mutagenesis is one of the mechanisms by which retroviruses can transform cells. Once a provirus was found in the vicinity of c-myc, with the concomitant activation of this gene, other proto-oncogenes were shown to be activated by proviral insertion in retrovirally-induced tumors. Subsequently, cloning of common proviral insertion sites led to the discovery of a series of new (putative) oncogenes. Some of these genes have been shown to fulfill key roles in growth and development. In this review I shall describe how proviruses can be used to identify proto-oncogenes, and list the loci, identified by this method. Furthermore, I shall illuminate the potential of provirus tagging by showing that it not only can mark new oncogenes, but can also be instrumental in defining sets of (onco)genes that guide a normal cell in a step-by-step fashion to its fully transformed, metastasizing, counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barklis E, Mulligan RC, Jaenisch R (1986) Chromosomal position or virus mutation permits retrovirus expression in embryonal carcincoma cells. Cell 47: 391–399

    Google Scholar 

  2. Bishop JM (1987) The molecular genetics of cancer. Science 235: 305–311

    Google Scholar 

  3. Bordereaux D, Fichelson S, Sola B, Tambourin PE, Gisselbrecht S (1987) Frequent involvement of the fim-3 region in Friend murine leukemia virus-induced mouse myeloblastic leukemias. J Virol 61: 4043–4045

    Google Scholar 

  4. Breindl M, Harbers K, Jaenisch R (1984) Retrovirus-induced lethal mutation in collagen I gene of mice is associated with an altered chromatin structure. Cell 38: 9–16

    Google Scholar 

  5. Brown AMC, Wildin RS, Prendergast TJ, Varmus HE (1986) A retrovirus vector expressing the putative mammary oncogene int-1 causes partial transformation of a mammary epithelial cell line. Cell 46: 1001–1009

    Google Scholar 

  6. Buchberg AM, Bedigian HG, Taylor BA, Brownell E, Ihle JN, Nagata S, Jenkins NA, Copeland NG (1988) Localization of Evi-2 to chromosome 11: linkage to other proto-oncogene and growth factor loci using interspecific backcross mice. Oncogene Res 2: 149–156

    Google Scholar 

  7. Canaani E, Dreazen O, Klar A, Rechavi G, Ram D, Cohen JB, Givol D (1983) Activation of the c-mos oncogene in a mouse plasmacytoma by insertion of an endogenous intracisternal A-particle genome. Proc Natl Acad Sci USA 80: 7118–7122

    Google Scholar 

  8. Celander D, Haseltine WA (1984) Tissue-specific transcription preference as a determinant of cell tropism and leukaemogenic potential of murine retroviruses. Nature 312: 159–162

    Google Scholar 

  9. Chatis PA, Holland CA, Silver JE, Frederickson TN, Hopkins N, Hartley JW (1984) A 3′ end fragment encompassing the transcriptional enhancers of nondefective Friend virus confers erythroleukemogenicity on Moloney leukemia virus. J Virol 52: 248–254

    Google Scholar 

  10. Chen SJ, Holbrook NJ, Mitchell KF, Vallone CA, Greengard JS, Crabtree G, Lin Y (1985) A viral long terminal repeat in the interleukin-2 gene at a cell line that constitutively produces interleukin-2. Proc Natl Acad Sci USA 82: 7284–7288

    Google Scholar 

  11. Corcoran LM, Adams JM, Dunn AR, Cory S (1984) Murine T lymphomas in which the cellular myc oncogene has been activated by retroviral insertion. Cell 37: 113–122

    Google Scholar 

  12. Cullen BR, Lomedico PT, Ju G (1984) Transcriptional interference in avian retroviruses—implications for the promoter insertion model of leukemogenesis. Nature 307: 241–245

    Google Scholar 

  13. Cuypers HT, Selten G, Quint W, Zijlstra M, Robanus-Maandag E, Boelens W, van Wezenbeek P, Melief C, Berns A (1984) Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 37: 141–150

    Google Scholar 

  14. Cuypers HT, Selten G, Zijlstra M, de Goede R, Melief C, Berns A (1986) Tumor progression in MuLV induced T-cell lymphomas: monitoring of clonal selections with viral and cellular probes. J Virol 60: 230–241

    Google Scholar 

  15. Davis B, Linney E, Fan H (1985) Suppression of leukaemia virus pathogenicity by polyoma virus enhancers. Nature 314: 550–553

    Google Scholar 

  16. Dejean A, Bougueleret L, Grzeschik KH, Tiollais P (1986) Hepatitis B virus DNA integration in a sequence homologous to v-erb-A and steroid receptor genes in a hepatocellular carcinoma. Nature 322: 70–72

    Google Scholar 

  17. Dickson C, Smith R, Brookes S, Peters G (1984) Tumorigenesis by mouse mammary tumor virus: proviral activation of a cellular gene in the common integration region int-2. Cell 37: 529–536

    Google Scholar 

  18. Domen J, von Lindern J, Hermans A, Breuer M, Grosveld G, Berns A (1987) Comparison of the human and mouse pim-1 cDNAs: nucleotide sequence and immunological identification of the “in vitro” synthesized pim-1 protein. Oncogene Res, submitted

  19. Durst M, Croce CM, Gissman L, Schwarz E, Huebner K (1987a) Papillomavirus sequences integrate near cellular oncogenes in some cervical carcinomas. Proc Natl Acad Sci USA 84: 1070–1074

    Google Scholar 

  20. Evans LH, Morrey JD (1987) Tissue-specific replication of Friend and Moloney murine leukemia viruses in infected mice. J Virol 61: 1350–1357

    Google Scholar 

  21. Fan H, Mittal S, Chute H, Chao E, Pattengale PK (1986) Rearrangements and insertions in the Moloney murine leukemia virus long terminal repeat alter biological properties in vivo and in vitro. J Virol 60: 204–214

    Google Scholar 

  22. Fung YKT, Lewis WG, Hung HJ, Crittenden LB (1983) Activation of the cellular oncogene c-erbB by LTR insertion: molecular basis for induction of erythroblastosis by avian leukosis virus. Cell 33: 357–368

    Google Scholar 

  23. Fung YKT, Crittenden LB, Kung HJ (1982) Orientation and position of Avian leukosis virus DNA relative to the cellular oncogene c-myc in B-lymphoma tumors of highly susceptible 151-5 × 7-2 chickens. J Virol 44: 742–746

    Google Scholar 

  24. Gallahan D, Callahan R (1987) Mammary tumorigenesis in feral mice: identification of a new int locus in mouse mammary tumor virus (Czech II)-induced mammary tumors. J Virol 61: 66–74

    Google Scholar 

  25. Gallahan D, Kozak C, Callahan R (1987) A new common integration region (int-3) for mouse mammary tumor virus on mouse chromosome 17. J Virol 61: 218–220

    Google Scholar 

  26. Garcia M, Wellinger R, Vessaz A, Diggelmann H (1986) A new site of integration for mouse mammary tumor virus proviral DNA common to BALB/cf (C3H) mammary and kidney adenocarcinomas. EMBO J 5: 127–134

    Google Scholar 

  27. George DL, Glick B, Trusko S, Freeman N (1986) Enhanced c-Ki-ras expression associate with Friend virus integration in a bone marrow-derived mouse cell line. Proc Natl Acad Sci USA 83: 1651–1655

    Google Scholar 

  28. Gisselbrecht S, Fichelson S, Sola B, Bordereaux D, Hampe A, Andre C, Galibert F, Tambourin P (1987) Frequent c-fms activation by proviral insertion in mouse myeloblastic leukaemias. Nature 329: 259–261

    Google Scholar 

  29. Gonda TJ, Cory S, Sobieszczuk P, Holtzman D, Adams JM (1987) Generation of altered transcripts by retroviral insertion within the c-myb gene in two murine monocytic leukemias. J Virol 61: 2754–2763

    Google Scholar 

  30. Goodenow MM, Hayward WS (1987) 5′ Long terminal repeats of myc-associated proviruses appear structurally intact but are functionally impaired in tumors induced by avian leukosis viruses. J Virol 61: 2489–2498

    Google Scholar 

  31. Goodwin RG, Rottman FM, Callaghan T, Kung HJ, Maroney PA, Nilsen TW (1986) c-erbB activation in avian leukosis virus-induced erythroblastosis: multiple epidermal growth factor receptor mRNAs are generated by alternative RNA processing. Mol Cell Biol 6: 3128–3133

    Google Scholar 

  32. Graham M, Adams JM, Cory S (1985) Murine T lymphomas with retroviral isnerts in the chromosomal 15 locus for plasmacytoma variant translocations. Nature 314: 740–743

    Google Scholar 

  33. Gray DA, Jackson DP, Percy DH, Morris VL (1986) Activation of int-1 and int-2 loci in GRf mammary tumors. Virology 154: 271–278

    Google Scholar 

  34. Greenberg R, Hawley R, Marcu KB (1985) Acquisition of an intracisternal A-particle near translocated c-myc gene in a murine plasma cell tumor. Mol Cell Biol 5: 3625–3628

    Google Scholar 

  35. Hahn M, Hayward WS (1988) Absence of missense mutations in activated c-myc genes in avian leukosis virus-induced B-cell lymphomas. Mol Cell Biol 8: 2659–2663

    Google Scholar 

  36. Hartley JW, Wolford NK, Old LJ, Rowe WP (1977) A new class of murine leukemia virus associated with development of spontaneous lymphomas. Proc Natl Acad Sci USA 74: 789–792

    Google Scholar 

  37. Hayward WS, Neel BG, Astrin SM (1981) Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290: 475–480

    Google Scholar 

  38. Holbrook NJ, Gulino A, Durand D, Lin Y, Crabtree GR (1987) Transcriptional activity of the Gibbon ape leukemia virus in the interleukin 2 gene of MLA 144 cells. Virology 159: 178–182

    Google Scholar 

  39. Holland CA, Anklesaria P, Sakakeeny MA, Greenberger JS (1987) Enhancer sequences of a retroviral vector determine expression of a gene in multipotent hematopoietic progenitors and committed erythroid cells. Proc Natl Acad Sci USA 84: 8662–8666

    Google Scholar 

  40. Holland CA, Hartley JW, Rowe WP, Hopkins N (1985) At least four genes contribute to the leukemogenicity of the murine retrovirus MCF 247 in AKR mice. J Virol 53: 158–165

    Google Scholar 

  41. Holland CA, Wozney J, Chatis PA, Hopkins N, Hartley JW (1985) Construction of recombinants between molecular clones of murine retrovirus MCF 247 and Akv: Determinant of an in vitro host range property that maps in the long terminal repeat. J Virol 53: 152–157

    Google Scholar 

  42. Hooper M, Hardy K, Handyside A, Hunter S, Monk M (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326: 292–295

    Google Scholar 

  43. Hunter T (1987) A thousand and one protein kinases. Cell 50: 823–829

    Google Scholar 

  44. Isfort R, Witter RL, Kung HJ (1987) C-myc activation in an unusual retrovirus-induced avian T-lymphoma resembling Marek's disease: Proviral insertion 5′ of exon one enhances the expression of an intron promoter. Oncogene Res 2: 81–94

    Google Scholar 

  45. Ishimoto A, Takimoto M, Adachi A, Kakuyama M, Kato S, Kakimi K, Fukuoka K, Ogiu T, Matsuyama M (1987) Sequences responsible for eryhtroid and lymphoid leukemia in the long terminal repeats of Friend-Mink cell focus-forming and Moloney murine leukemia viruses. J Virol 61: 1861–1866

    Google Scholar 

  46. Jahner D, Jaenisch R (1985) Retrovirus-induced de novo methylation of flanking host sequences correlates with gene inactivity. Nature 315: 594–597

    Google Scholar 

  47. Jones TR, Cole MD (1987) Rapid cytoplasmic turnover of c-myc mRNA: requirement of the 3′ untranslated sequences. Mol Cell Biol 7: 4513–4521

    Google Scholar 

  48. Kanter MR, Smith RE, Hayward WS (1988) Rapid induction of B-cell lymphomas: Insertional activation of c-myb by avian leukosis virus. J Virol 62: 1423–1432

    Google Scholar 

  49. Kimelman D, Kirschner M (1987) Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell 51: 869–877

    Google Scholar 

  50. King W, Patel MD, Lobel LI, Goff SP, Nguyen-Huu MC (1985) Insertion mutagenesis of embryonal carcinoma cells by retroviruses. Science 228: 554–558

    Google Scholar 

  51. Kuehn MR, Bradley A, Robertson EJ, Evans MJ (1987) A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326: 295–298

    Google Scholar 

  52. Lazo PA, Tsichlis PN (1988) Recombination between two integrated proviruses, one of which was inserted near c-myc in a retrovirus-induced rat thymoma: implications for tumor progression. J Virol 62: 788–794

    Google Scholar 

  53. Lemay G, Jolicoeur P (1984) Rearrangement of a DNA sequence homologous to a cell-virus junction fragment in several Moloney murine leukemia virus-induced rat thymomas. Proc Natl Acad Sci USA 81: 38–42

    Google Scholar 

  54. Lenz J, Celander D, Crowther RL, Patarca R, Perkins DW, Haseltine WA (1984) Determination of the leukaemogenicity of a murine retrovirus by sequences within the long terminal repeat. Nature 308: 467–470

    Google Scholar 

  55. Li Y, Holland CA, Hartley JW, Hopkins N (1984) Viral integration near c-myc in 10–20% of MCF 247-induced AKR lymphomas. Proc Natl Acad Sci USA 81: 6808–6811

    Google Scholar 

  56. Mester J, Wagenaar E, Sluyser M, Nusse R (1987) Activation of int-1 and int-2 mammary oncogenes in hormone-dependent and -independent mammary tumors of GR mice. J Virol 61: 1073–1078

    Google Scholar 

  57. Miles BD, Robinson HL (1985) High frequency of transduction of c-erbB in Avian Leukosis virus induced erythroblastosis. J Virol 54: 295–303

    Google Scholar 

  58. Moore R, Casey G, Brookes S, Dixon M, Peters G, Dickson C (1986) Sequence, topography and protein coding potential of mouse int-2: a putative oncogene activated by mouse mammary tumor virus. EMBO J 5: 919–924

    Google Scholar 

  59. Moreau-Gachelin F, Tavitian A, Tambourin P (1988) Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature 331: 277–280

    Google Scholar 

  60. Mucenski ML, Bedigian HG, Shull MM, Copeland NG, Jenkins NA (1988a) Comparative molecular genetic analysis of lymphomas from six inbred mouse strains. J Virol 62: 839–846

    Google Scholar 

  61. Mucenski ML, Gilbert DJ, Taylor BA, Jenkins NA, Copeland NG (1987a) Common sites of viral integration in lymphomas arising in AKXD recombinant inbred mouse strains. Oncogene Res 2: 33–48

    Google Scholar 

  62. Mucenski ML, Taylor BA, Copeland NG, Jenkins NA (1987b) Characterization of somatically acquired ecotropic and mink cell focus-forming viruses in lymphomas of AKXD recombinant inbred mice. J Virol 61: 2929–2933

    Google Scholar 

  63. Mucenski ML, Taylor BA, Ihle JN, Hartley JW, Morse HC III, Jenkins NA, Copeland NG (1988b) Identification of a commons ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Biol 8: 301–308

    Google Scholar 

  64. Mucenski ML, Taylor BA, Jenkins NA, Copeland NG (1986) AKXD recombinant inbred strains: models for studying the molecular genetic basis of murine lymphomas. Mol Cell Biol 6: 4236–4243

    Google Scholar 

  65. Mullins JI, Brody DS, Binari RC Jr, Cotter SM (1984) Viral transduction of c-myc gene in naturally occurring feline leukaemias. Nature 308: 856–858

    Google Scholar 

  66. Neel BG, Gasic GP, Rogler CE, Skalka AM, Ju G, Hishinuma F, Papas T, Astrin SM, Hayward WS (1982) Molecular analysis of the c-myc locus in normal tissue and in avian leukosis virus-induced lymphomas. J Virol 44: 158–166

    Google Scholar 

  67. Neel BG, Hayward WS, Robinson HL, Fang J, Astrin SM (1981) Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNSs: oncgenesis by promoter insertion. Cell 23: 323–334

    Google Scholar 

  68. Neil JC, Hughes D, McFarlane R, Wilkie NM, Onions DE, Lees G, Jarett O (1984) Transduction and rearrangement of the myc gene by feline leukemia virus in naturally occurring T-cell leukemias. Nature 308: 814–820

    Google Scholar 

  69. Nilsen TW, Maroney PA, Goodwin RG, Rottman FM, Crittenden LB, Raines MA, Kung HJ (1985) c-erbB activation in ALV-induced erythroblastosis: Novel RNA processing and promoter insertion result in expression of an amino-truncated EGF receptor. Cell 41: 719–726

    Google Scholar 

  70. Noori-Dalloii MR, Swift RA, Kung HJ, Crittenden LB, Witter RL (1981) Specific integration of REV proviruses in avian bursal lymphomas. Nature 294: 574–575

    Google Scholar 

  71. Nottenburg C, Stubblefield E, Varmus HE (1987) An aberrant avian leukosis virus provirus inserted downstream from the chicken c-myc coding sequence in a bursal lymphoma results from intrachromosomal recombination between two proviruses and deletion of cellular DNA. J Virol 61: 1828–1833

    Google Scholar 

  72. Nusse R (1986) The activation of cellular oncogenes by retroviral insertion. Trends Genet 2: 244–247

    Google Scholar 

  73. Nusse R, Berns A (1988) Cellular oncogene activation by insertion of retroviral DNA. Genes identified by provirus tagging. In: Klein G (ed) Cellular oncogene activation. Marcel Dekker, New York, in press

    Google Scholar 

  74. Nusse R, van Ooyen A, Cox D, Kai T, Fung Y, Varmus H (1984) Mode of proviral activation of putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307: 131–136

    Google Scholar 

  75. Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31: 99–109

    Google Scholar 

  76. O'Donnell PV, Fleissner E, Lonial H, Koehne CF, Reicin A (1985) Early clonality and high-frequency proviral integration into the c-myc locus in AKR leukemias. J Virol 55: 500–503

    Google Scholar 

  77. Palmiter RD, Brinster RL (1986) Germline transformation of mice. Ann Rev Genet 20: 465–499

    Google Scholar 

  78. Payne GS, Bishop JM, Varmus HE (1982) Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature 295: 209–213

    Google Scholar 

  79. Peters G, Brookes S, Smith R, Dickson C (1983) Tumorigenesis by mouse mammary tumor virus: evidence for a common region for provirus integration in mammary tumors. Cell 33: 369–377

    Google Scholar 

  80. Peters G, Lee AL, Dickson C (1986) Concerted activation of two potential proto-oncogenes in carcinomas induced by mouse mammary tumor virus. Nature 320: 628–631

    Google Scholar 

  81. Quint W, Boelens W, van Wezenbeek P, Cuypers HT, Robanus-Maandag E, Selten G, Berns A (1984) Generation of AKR focus-forming viruses: a conserved single copy xenotropic-like provirus provides recombinant long terminal repeat sequences. J Virol 50: 432–438

    Google Scholar 

  82. Raines MA, Lewis WG, Crittenden LB, Kung HJ (1985) c-erbB activation in avian leukosis virus-induced erythroblastosis: clustered integration sites and the arrangement of provirus in the c-erbB alleles. Proc Natl Acad Sci USA 82: 2287–2291

    Google Scholar 

  83. Reicin A, Yang J, Marcu KB, Fleissner E, Koehne CF, O'Donnell PV (1986) Deregulation of the c-myc oncogene in virus-induced thymic lymphomas of AKR/J mice. Mol Cell Biol 6: 4088–4092

    Google Scholar 

  84. Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R (1987) The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50: 649–657

    Google Scholar 

  85. Rijsewijk F, van Deemter L, Wagenaar E, Sonnenberg A, Nusse R (1987) Transfection of the int-1 mammary oncogene in cuboidal RAC mammary cell line results in morphological transformation and tumorigenicity. EMBO J 6: 127–131

    Google Scholar 

  86. Robinson HL, Gagnon GC (1986) Patterns of proviral insertion and deletion in avian leukosis virus-induced lymphomas. J Virol 57: 28–36

    Google Scholar 

  87. Rohdewohld H, Weiher H, Freik W, Jaenisch R, Breindl M (1987) Retrovirus integration and chromatin structure: Moloney murine leukemia proviral integration sites map near DNase I-hypersensitive sites. J Virol 61: 336–343

    Google Scholar 

  88. Rosen CA, Haseltine WA, Lenz J, Ruprecht R, Cloyd MW (1985) Tissue selectivity of murine leukemia virus infection is determined by long terminal repeat sequences. J Virol 55: 862–866

    Google Scholar 

  89. Rosson D, Dugan D, Reddy EP (1987) Aberrant splicing events that are induced by proviral integration: Implications for myb oncogene activation. Proc Natl Acad Sci USA 84: 3171–3175

    Google Scholar 

  90. Savard P, DesGroseillers L, Rassart E, Poirier Y, Jolicoeur P (1987) Important role of the long terminal repeat of the helper Moloney murine leukemia virus in Abelson virus-induced lymphoma. J Virol 61: 3266–3275

    Google Scholar 

  91. Schubach W, Groudine M (1984) Alterations of c-myc chromatin by Avian leukosis virus integration. Nature 307: 702–708

    Google Scholar 

  92. Schuermann M, Michalides R (1987) A rare common integration site of proviruses of the mouse mammary tumor virus in P-type mammary tumors of mouse strain GR. Virology 156: 229–238

    Google Scholar 

  93. Selten G, Cuypers HT, Berns A (1985) Proviral activation of the putative oncogene pim-1 in MuLV-induced T-cell lymphomas. EMBO J 4: 1793–1798

    Google Scholar 

  94. Selten G, Cuypers HT, Boelens W, Robanus-Maandag E, Verbeek J, Domen J, van Beveren C, Berns A (1986) The primary structure of the putative oncogene pim-1 shows extensive homology with protein kinases. Cell 46: 603–611

    Google Scholar 

  95. Selten G, Cuypers HT, Zijlstra M, Melief C, Berns A (1984) Involvement of c-myc in MuLV-induced T cell lymphomas in mice: frequency and mechanisms of activation. EMBO J 3: 3215–3222

    Google Scholar 

  96. Shackleford GM, Varmus HE (1987) Expression of the proto-oncogene int-1 is restricted to postmeiotic male germ cells and the neural tube of midgestation embryos. Cell 50: 89–95

    Google Scholar 

  97. Shank PR, Schatz PJ, Jensen LM, Tsichlis PN, Coffin JM, Robinson HL (1985) Sequence in the gag-pol-5′ env region of Avian leukosis viruses confer the ability to induce osteopetrosis. Virology 145: 94–104

    Google Scholar 

  98. Shaw G, Kamen R (1986) A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46: 659–667

    Google Scholar 

  99. Shen-Ong GL (1987) Alternative internal splicing in c-myb RNAs occurs commonly in normal and tumor cells. EMBO J 6: 4035–4039

    Google Scholar 

  100. Shen-Ong GL, Morse HC, Potter M, Mushinski JF (1986) Two modes of c-myb activation in virus-induced mouse myeloid tumors. Mol Cell Biol 6: 380–392

    Google Scholar 

  101. Shen-Ong GLC, Potter M, Lavu S, Premkumar Reddy E (1984) Activation of the c-myb locus by viral insertional mutagenesis in plasmacytoid lymphosarcomas. Science 226: 1077–1080

    Google Scholar 

  102. Shih CC, Stoye JP, Coffin JM (1988) Highly preferred targets for retrovirus integration. Cell 53: 531–537

    Google Scholar 

  103. Short MK, Okenquist SA, Lenz J (1987) Correlation of leukemogenic potential of murine retroviruses with transcriptional tissue preference of the viral long terminal repeats. J Virol 61: 1067–1072

    Google Scholar 

  104. Silver J, Buckler CE (1986) A preferred region for integration of Friend murine leukemia virus in hematopoietic neoplasms is closely linked to the int-2 oncogene. J Virol 60: 1156–1158

    Google Scholar 

  105. Silver J, Kozak C (1986) Common proviral integration region on mouse chromosome 7 in lymphomas and myelogenus leukemias induced by Friend murine leukemia virus. J Virol 57: 526–533

    Google Scholar 

  106. Sitbon M, Sola B, Evans L, Nishio J, Hayes SF, Nathanson K, Garon CF, Chesebro B (1986) Hemolytic anemia and erythroleukemia, two distinct pathogenic effects of Friend MuLV: mapping of the effects of different regions of the viral genome. Cell 47: 851–859

    Google Scholar 

  107. Smith R, Peters G, Dickson C (1988) Multiple RNAs expressed from the int-2 gene in mouse embryonal carcinoma cell lines encode a protein with homology to fibroblast growth factors. EMBO J 7: 1013–1022

    Google Scholar 

  108. Sola B, Fichelson S, Bordereaux D, Tambourin PE, Gisselbrecht S (1986) fim-1 and fim-2: two new integration regions of Friend Murine Leukemia virus in myeloblastic leukemias. J Virol 60: 718–725

    Google Scholar 

  109. Stanbridge EJ, Der CJ, Doersen CJ, Nishimi RY, Peehl DM, Weissman BE, Wilkinson JE (1982) Human cell hybrid: analysis of transformation and tumorigenicity. Science 215: 252–259

    Google Scholar 

  110. Steffen D (1984) Proviruses are adjacent to c-myc in some murine leukemia virus-induced lymphomas. Proc Natl Acad Sci USA 81: 2097–2101

    Google Scholar 

  111. Swift RA, Boerkoel C, Ridgway A, Fujita DJ, Dodgson JB, Kung HJ (1987) B-lymphoma induction by reticuloendotheliosis virus: characterization of a mutated chicken syncytial virus provirus involved in c-myc activation. J Virol 61: 2084–2090

    Google Scholar 

  112. Swift RA, Shaller E, Witter RL, Kung HJ (1985) Insertional activation of c-myc by reticuloendotheliosis virus in chicken B lymphoma: nonrandom distribution and orientation of the proviruses. J Virol 54: 869–872

    Google Scholar 

  113. Tsichlis PN, Lohse MA, Szpirer C, Szpirer J, Levan G (1985) Cellular DNA regions involved in the induction of rat thymic lymphomas (Mlvi-1, Mlvi-2, Mlv-3 and c-myc) represent independent loci as determined by their chromosomal map location in the rat. J Virol 50: 938–942

    Google Scholar 

  114. Tsichlis PN, Strauss PG, Hu LF (1983) A common region for proviral DNA integration in MoMuLV-induced rat thymic lymphomas. Nature 302: 445–449

    Google Scholar 

  115. Tsichlis PN, Strauss PG, Kozak CA (1984) Cellular DNA region involved in induction of thymic lymphomas (Mlvi-2) maps to mouse chromosome 15. Mol Cell Biol 4: 997–1000

    Google Scholar 

  116. Tsichlis PN, Strauss PG, Lohse MA (1985) Concerted DNA rearrangement in Moloney Murine Leukemia virus-induced thymomas: a potential synergistic relationship in oncogenesis. J Virol 56: 258–267

    Google Scholar 

  117. van Ooyen A, Nusse R (1984) Structure and nucleotide sequence of the putative mammary oncogene int-1; proviral insertions leave the protein-encoding domain intact. Cell 39: 233–240

    Google Scholar 

  118. Varmus HE (1984) The molecular genetics of cellular oncogenes. Ann Rev Genet 18: 553–612

    Google Scholar 

  119. Vijaya S, Steffen DL, Kozak C, Robinson HL (1987) Dsi-1, a region with frequent proviral insertions in Moloney murine leukemia virus-induced rat thymomas. J Virol 61: 1164–1170

    Google Scholar 

  120. Vijaya S, Steffen DL, Robinson HL (1986) Acceptor sites for retroviral integrations map near DNase I-hypersensitive sites in chromatin. J Virol 60: 683–692

    Google Scholar 

  121. Villemur R, Monczak Y, Rassart E, Kozak C, Jolicoeur P (1987) Identification of a new common provirus integration site in Gross passage A murine leukemia virus-induced mouse thymoma DNA. Mol Cell Biol 7: 512–522

    Google Scholar 

  122. Villeneuve L, Rassart E, Jolicoeur P, Graham M, Adams JM (1986) Proviral integration site Mis-1 in rat thymomas corresponds to the pvt-1 translocation breakpoint in murine plasma cytomas. Mol Cell Biol 6: 1834–1837

    Google Scholar 

  123. Vogt M, Haggblom C, Swift S, Haas M (1985) Envelope gene and long terminal repeat determine the different biological properties of Rauscher, Friend, and Moloney mink cell focus-inducing viruses. J Virol 55: 184–192

    Google Scholar 

  124. Voronova AF, Adler HT, Sefton BM (1987) Two lck transcripts containing different 5′ untranslated regions are present in T cells. Mol Cell Biol 7: 4407–4413

    Google Scholar 

  125. Voronova AF, Selton BM (1986) Expression of a new tyrosine protein kinase is stimulated by retrovirus promoter insertion. Nature 319: 682–685

    Google Scholar 

  126. Webb E, Adams JM, Cory S (1984) Variant (6; 15) translocation in a murine plasmacytoma occurs near an immunoglobulin kappa gene but far from the myc oncogene. Nature 312: 777–779

    Google Scholar 

  127. Weinstein Y, Cleveland JL, Askew DS, Rapp UR, Ihle JN (1987) Insertion and truncation of c-myb by murine leukemia virus in a myeloid cell line derived from cultures of normal hematopoietic cells. J Virol 61: 2339–2343

    Google Scholar 

  128. Weissman BE, Saxon PJ, Pasquale SR, Jones GR, Geiser AG, Stanbridge EJ (1987) Introduction of a normal human chromosome 11 into a Wilms' tumor cell line controls its tumorigenic expression. Science 236: 175–180

    Google Scholar 

  129. Westaway D, Papkoff J, Moscovici C, Varmus HE (1986) Identification of a provirally activated c-Ha-ras oncogene in an avian nephroblastoma via a novel procedure: cDNA cloning of a chimaeric viral-host transcript. EMBO J 5: 301–309

    Google Scholar 

  130. Westaway D, Payne G, Varmus HE (1984) Proviral deletions and oncogene base-substitutions in insertionally mutagenized c-myc alleles may contribute to the progression of avial bursal tumors. Proc Natl Acad Sci USA 81: 843–847

    Google Scholar 

  131. Wilkinson DG, Bailes JA, McMahon AP (1987) Expression of the proto-oncogene int-1 is restricted to specific neural cells in the developing mouse embryo. Cell 50: 79–88

    Google Scholar 

  132. Wilkinson DG, Peters G, Dickson C, McMahon AP (1988) Expression of the FGF-related protoc-oncogene int-2 during gastrulation and neurulation in the mouse. EMBO J 7: 691–695

    Google Scholar 

  133. Ymer S, Tucker WQJ, Sanderson CJ, Hapel AJ, Campbell HC, Young IG (1985) Constitutive synthesis of interleukin-3 by leukaemia cell line WEHI-3 B is due to retroviral insertion near the gene. Nature 317: 255–258

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berns, A. Provirus tagging as an instrument to identify oncogenes and to establish synergism between oncogenes. Archives of Virology 102, 1–18 (1988). https://doi.org/10.1007/BF01315558

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01315558

Keywords

Navigation