Skip to main content
Log in

Melnikov's method applied to the double pendulum

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Melnikov's method is applied to the planar double pendulum proving it to be a chaotic system. The parameter space of the double pendulum is discussed, and the integrable cases are identified. In the neighborhood of the integrable case of two uncoupled pendulums Melnikov's integral is evaluated using residue calculus. In the two limiting cases of one pendulum becoming a rotator or an oscillator, the parameter dependence of chaos, i.e. the width of the separatrix layer is analytically discussed. The results are compared with numerically computed Poincaré surfaces of section, and good agreement is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holmes, P., Marsden, J.E.: Commun. Math. Phys.82, 523 (1982)

    Google Scholar 

  2. Poincaré, H.: Les méthodes nouvelles de la méchanique céleste. New York: Dover 1957

    Google Scholar 

  3. Landau, L.D., Lifschitz, E.M.: Theoretische Physik I. Berlin: Akademie Verlag 1964

    Google Scholar 

  4. Richter, P.H., Scholz, H.-J.: Das ebene Doppelpendel — The planar double pendulum, Publikationen zu wissenschaftlichen Filmen, Sektion Technische Wissenschaften/Naturwissenschaften,9 IWF, Göttingen, 1986

    Google Scholar 

  5. Richter, P.H., Scholz, H.-J.: Chaos in classical mechanics: the double pendulum: In: Stochastic Phenomena and Chaotic Behavior in Complex Systems. Schuster, P. (ed.) Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  6. Guggenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  7. Koch, B.P., Bruhn, B.: J. Phys. A25, 3945 (1992)

    Google Scholar 

  8. Gonzalez, M.O.: Classical complex analysis. New York: Marcel Dekker 1992

    Google Scholar 

  9. Abramowitz, M., Stegun, I.A., (eds.): Handbook of mathematical functions. New York: Dover 1972

    Google Scholar 

  10. Gradshtevn, I.S., Ryzhik, I.M.: Table of integrals, series, and products. New York: Academic Press 1980

    Google Scholar 

  11. Byrd, P.F., Friedmann, M.D.: Handbook of elliptic integrals for engineers and scientists. Berlin, Heidelberg, New York: Springer 1971

    Google Scholar 

  12. Lichtenberg, A.J., Lieberman, M.A.: Regular and stochastic motion. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  13. Richter, P.H., Scholz, H.-J., Wittek, A.: A Breathing Chaos, Nonlinearity3, 45 (1990)

    Google Scholar 

  14. Wolfram, S.: Mathematica. Redwood City, Calif. Addison-Wesley 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dullin, H.R. Melnikov's method applied to the double pendulum. Z. Physik B - Condensed Matter 93, 521–528 (1994). https://doi.org/10.1007/BF01314257

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01314257

PACS

Navigation