Skip to main content
Log in

Metabolic rates of midwater crustaceans as a function of depth of occurrence off the Hawaiian Islands: Food availability as a selective factor?

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

During July of 1983, 1986, and 1987, we measured rates of oxygen consumption of 234 individuals of 17 species of midwater crustaceans (orders Decapoda, Mysidacea, and Euphausiacea) off the Hawaiian islands at depths from the surface to greater than 1200 m. The routine metabolic rates declined with increasing depths of the species' occurrence to an extent greater than could be accounted for by depth-related changes in body size or water temperature. Most species appeared able to regulate their oxygen consumption down to the lowest oxygen partial pressures found in their depth range (20 mm Hg O2), but did not regulate to such low oxygen partial pressures as did similar midwater crustaceans off California, where oxygen levels reach as low as 6 mm Hg. Metabolic rates of the shallower-living, but not the deepest-living Hawaiian crustaceans were significantly higher than those of Californian crustaceans. This is interpreted as indicating that the metabolic rates of midwater crustaceans are not adapted specifically to differing levels of primary production and that the decline with depth of metabolic rates in these species is not the result of food limitation at depth. The data are, however, consistent with the hypothesis that lower metabolic rates at depth are due to the relaxation of selection pressures relating to visual predation near the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bailey, T. G., Robison, B. H. (1986). Food availability as a selective factor on the chemical composition of midwater fishes in the eastern North Pacific. Mar. Biol. 91: 131–141

    Google Scholar 

  • Boden, B. P. (1961). Twilight irradiance in the sea. In: Jerlov, N. G. (ed.) Symposium on radiant energy in the sea. International Association of Physical Oceanography, Paris, p. 96–101

    Google Scholar 

  • Chace, F. A. (1986). The caridean shrimps (Crustacea: Decapoda) of the Albatross Philippine expedition, 1907–1910, Part4: families Oplophoridae and Nematocarcinidae. Smithson. Contr. Zool. 432: 1–82

    Google Scholar 

  • Childress, J. J. (1968). Oxygen minimum layer: vertical distribution and respiration of the mysidGnathophausia ingens. Science, N.Y. 160: 1242–1243

    Google Scholar 

  • Childress, J. J. (1969a). The respiratory physiology of the oxygen minimum layer mysidGnathophausia ingens. Ph. D. thesis. Stanford University, California.

    Google Scholar 

  • Childress, J. J. (1969b). The respiration of deep-sea crustaceans as related to their depth of occurrence and the oxygen minimum layer. Am. Zool. 9: p. 222

    Google Scholar 

  • Childress, J. J. (1971). Respiratory adaptations to the oxygen minimum layer in the bathypelagic mysidGnathophausia ingens. Biol. Bull. mar. biol. Lab., Woods Hole 141: 1 109–121

    Google Scholar 

  • Childress, J. J. (1975). The respiratory rates of midwater crustaceans as a function of depth of occurrence and relation to the oxygen minimum layer off southern California. Comp. Biochem. Physiol. 50A: 787–799

    Google Scholar 

  • Childress, J. J. (1977). Physiological approaches to the biology of midwater organisms. In: Andersen, N. R., Zahuranec, B. J. (eds.) Oceanic sound scattering prediction. Plenum Press, New York, p. 301–324

    Google Scholar 

  • Childress, J. J., Barnes, A. T., Quetin, L. B., Robison, B. H. (1978). Thermally protecting cod ends for the recovery of living deepsea animals. Deep-Sea Res. 25: 419–422

    Google Scholar 

  • Childress, J. J., Cowles, D. L., Favuzzi, J. A., Mickel, T. J. (1990a). Metabolic rates of deep-sea decapod crustaceans decline with increasing depth primarily due to the decline in temperature. Deep-Sea Res. 37: 929–949

    Google Scholar 

  • Childress, J. J., Mickel, T. J. (1985). Metabolic rates of animals from the hydrothermal vents and other deep-sea habitats. Bull. biol. Soc. Wash. 6: 249–260

    Google Scholar 

  • Childress, J. J., Nygaard, M. H. (1973). The chemical composition of midwater fishes as a function of depth of occurrence off Southern California. Deep-Sea Res. 20: 1093–1109

    Google Scholar 

  • Childress, J. J., Nygaard, M. (1974). The chemical composition and buoyancy of midwater crustaceans as a function of depth off Southern California. Mar. Biol. 27: 225–238

    Google Scholar 

  • Childress, J. J., Price, M. H., Favuzzi, J., Cowles, D. L. (1990b). Chemical composition of midwater fishes as a function of depth of occurrence off the Hawaiian Islands: food availability as a selective factor? Mar. Biol. 105: 235–246

    Google Scholar 

  • Childress, J. J., Somero, G. N. (1979). Depth-related enzymic activities in muscle, brain and heart of deep-living pelagic marine teleosts. Mar. Biol. 52: 273–283

    Google Scholar 

  • Childress, J. J., Taylor, S. M., Cailliet, G. M., Price, M. H. (1980). Patterns of growth, energy utilization and reproduction in some meso- and bathypelagic fishes off southern California. Mar. Biol. 61: 27–40

    Google Scholar 

  • Clarke, G. L. (1961). The conditions of light in the sea with special reference to bioluminescence. In: Jerlov, N. G. (ed.) Symposium on radiant energy in the sea. International Association of Physical Oceanography, Paris, p. 101–103

    Google Scholar 

  • Clarke, G. L. (1971). Light conditions in the sea in relation to the diurnal migrations of animals. In: Farquhar, G. B. (ed.) Proceedings of an international symposium on biological sound scattering in the ocean. Maury Center for Ocean Science, Washington, D.C., p. 41–50

    Google Scholar 

  • Clarke, G. L., Denton, E. J. (1962). Light and animal life. In: Hill, M. N. (ed.) The sea. Vol. 1. Interscience Publishers, New York, p. 456–468

    Google Scholar 

  • Clarke, W. G. (1962). The genusGnathophausia (Mysidacea, Crustacea), its systematics and distribution in the Pacific Ocean. Ph. D. dissertation University of California, San Diego

    Google Scholar 

  • Cowles, D. L. (1987). Factors affecting the aerobic metabolism of midwater crustaceans. Ph. D. dissertation. University of California, Santa Barbara

    Google Scholar 

  • Cowles, D. L., Childress, J. J. (1988). Swimming speed and oxygen consumption in the bathypelagic mysidGnathophausia ingens. Biol. mar. biol. Lab., Woods Hole 175: 111–121

    Google Scholar 

  • Cullen, J. J., Eppley, R. W. (1981). Chlorophyll maximum layers of the Southern California Bight and possible mechanisms of their formation and maintenance. Oceanol. Acta 4: 1 23–32

    Google Scholar 

  • Denton, E. J., Gray, J. A. B. (1988). Mechanical factors in the excitation of the lateral lines of fishes. In: Atema, J., Fay, R. R., Popper, A. N., Tavolga, W. N. (eds.) Sensory biology of aquatic animals. Springer-Verlag, New York, p. 595–617

    Google Scholar 

  • Donnelly, J., Torres, J. J. (1988). Oxygen consumption of midwater fishes and crustaceans from the eastern Gulf of Mexico. Mar. Biol. 97: 483–494

    Google Scholar 

  • George, R. Y. (1981). Functional adaptations of deep-sea organisms. In: Vernberg, F. J., Vernberg, W. B. (eds.) Functional adaptations of marine organisms. Academic Press, N.Y., p. 279–332

    Google Scholar 

  • Gordon, D. C. (1970). Chemical and biological observations at station Gollum, and oceanic station near Hawaii, January 1969 to June 1970. Hawaii University, Institute of Geophysics (Internal Rep. HIG-70-22)

  • Hayward, T. L., McGowan, J. A. (1985). Spatial patterns of chlorophyll, primary production, macrozooplankton, biomass, and physical structure in the central North Pacific Ocean. J. Plankton Res. 7: 147–167

    Google Scholar 

  • Hayward, T. L., Venrick, E. L., McGowan, J. A. (1983). Environmental heterogeneity and plankton community structure in the central North Pacific. J. mar. Res. 41: 711–729

    Google Scholar 

  • Ikeda, T. (1988). Metabolism and chemical composition of crustaceans from the Antarctic mesopelagic zone. Deep-Sea Res. 35: 1991–2002

    Google Scholar 

  • Loeb, V. J., Smith, P. E., Moser, N. G. (1983). Icthyoplankton and zooplankton abundance patterns in the California Current area, 1975. Rep. Calif. coop. ocean. Fish. Invest. 24: 109–131

    Google Scholar 

  • Lythgoe, J. N. (1988). Light and vision in the aquatic environment. In: Atema, J., Fay, R. R., Popper, A. N., Tavolga, W. N. (eds.) Sensory biology of aquatic animals. Springer-Verlag, New York, p. 57–82

    Google Scholar 

  • Marshall, N. B. (1979). Developments in deep-sea biology. Blandford Press, Poole, UK

    Google Scholar 

  • Mauchline, J. (1972). The biology of bathypelagic organisms, especially Crustacea. Deep-Sea Res. 19: 753–780

    Google Scholar 

  • Mickel, T. J., Quetin, L. B., Childress, J. J. (1983). Construction of a polarographic oxygen sensor in the laboratory. In: Gnaiger, E., Forstner, H. (eds.) Polarographic oxygen sensors. Springer-Verlag, Berlin, p. 81–85

    Google Scholar 

  • Murray, C. N., Riley, J. P. (1969). The solubility of gases in distilled water and seawater — II. Oxygen. Deep-Sea Res. 16: 311–320

    Google Scholar 

  • Nicol, J. A. C. (1978). Bioluminescence and vision. In: Herring, P. J. (ed.) Bioluminescence in action. Academic Press, New York, p. 367–398

    Google Scholar 

  • Owen, R. W., Jr. (1974). Distribution of primary production, plant pigments, and Secchi depth in the California Current region, 1969. Calif. coop. ocean. Fish. Invest. Atlas 20: 98–117

    Google Scholar 

  • Raymont, J. E. G. (1980). Plankton and productivity in the oceans. 2nd ed. Vol. 1: Phytoplankton. Pergamon Press, New York

    Google Scholar 

  • Reid, J. L. (1962). On circulation, phosphate-phosphorus content, and zooplankton volumes in the upper part of the Pacific Ocean. Limnol. Oceanogr. 7: 287–306

    Google Scholar 

  • Sanders, N. K., Childress, J. J. (1990a). A comparison of the respiratory function of the haemocyanins of vertically migrating and non-migrating oplophorid shrimps. J. exp. Biol. 15: 2167–187

    Google Scholar 

  • Sanders, N. K., Childress, J. J. (1990b). Adaptations to the deep sea oxygen minimum layer: oxygen binding by the hemocyanin of the bathypelagic mysid,Gnathophausia ingens Dohrn. Biol. Bull. mar. biol. Lab., Woods Hole 178: 286–294

    Google Scholar 

  • Siebenaller, J. F., Yancey, P. H. (1984). Protein composition of white skeletal muscle from mesopelagic fishes having different water and protein contents. Mar. Biol. 78: 129–137

    Google Scholar 

  • Somero, G. N., Childress, J. J. (1980). A violation of the metabolism-size scaling paradigm: activities of glycolytic enzymes in muscle increase in large size fishes. Physiol. Zoöl. 53: 322–337

    Google Scholar 

  • Smith, K. L., Jr., Laver, M. B. (1981). Respiration of the bathypelagic fishCyclothone acclinidens. Mar. Biol. 61: 261–266

    Google Scholar 

  • Smith, P. E., Eppley, R. W. (1982). Primary production and the anchovy population in the Southern California Bight: comparison of time series. Limnol. Oceanogr. 27: 11–17

    Google Scholar 

  • Smith, R. C., Bidigare, R. R., Prézelin, B. B., Baker, K. S., Brooks, J. M. (1987). Optical characterization of primary productivity across a coastal front. Mar. Biol. 96: 575–591

    Google Scholar 

  • Torres, J. J., Belman, B. W., Childress, J. J. (1979). Oxygen consumption rates of midwater fishes as a function of depth of occurrence. Deep-Sea Res. 26A: 185–197

    Google Scholar 

  • Torres, J. J., Childress, J. J. (1985). Respiration and chemical composition of the bathypelagic euphasiidBentheuphausia amblyops. Mar. Biol. 87: 267–272

    Google Scholar 

  • Torres, J. J., Somero, G. N. (1988). Metabolism, enzymic activities and cold adaptation in Antarctic mesopelagic fishes. Mar. Biol. 98: 169–180

    Google Scholar 

  • Vinogradov, M. E. (1968). Vertical distribution of the oceanic zooplankton. Academy of Sciences of the USSR, Institute of Oceanography. [Translated from Russian by Israel Program for Scientific Translations, Jerusalm 1970]

  • Vinogradov, M. E., Tseitlin, V. B. (1983). Deep-sea pelagic domain (aspects of bioenergetics). In: Rowe, G. T. (ed.) The sea. Vol. 8. Deep-sea biology. John Wiley & Sons, New York, p. 123–166

    Google Scholar 

  • Walters, J. (1975). Ecology of Hawaiian sergestid shrimps (Penaeides: Sergestidae). Ph. D. dissertation, University of Hawaii, Honolulu

    Google Scholar 

  • Zar, J. H. (1974). Biostatistical analysis. Prentice-Hall, Inc., Englewood Cliffs, N.J.

    Google Scholar 

  • Zerbe, G. O., Archer, P. G., Banchero, N., Lechner, A. J. (1982). On comparing regression lines with unequal slopes. Am. J. Physiol. 242: R178-R180

    Google Scholar 

  • Ziemann, D. A. (1975). Patterns of vertical distribution, vertical migration, and reproduction in the Hawaiian mesopelagic shrimp of the family Oplophoridae. Ph. D. dissertation. University of Hawaii, Honolulu

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M.G. Hadfield, Honolulu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowles, D.L., Childress, J.J. & Wells, M.E. Metabolic rates of midwater crustaceans as a function of depth of occurrence off the Hawaiian Islands: Food availability as a selective factor?. Mar. Biol. 110, 75–83 (1991). https://doi.org/10.1007/BF01313094

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313094

Keywords

Navigation