Skip to main content
Log in

The three-particle ladder approximation as a new approach towards a general theory of electron-correlation effects inCVV Auger-electron and appearance-potential spectroscopy

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Due to their sensitivity to electron-correlation effects,CVV Auger-electron (AES) and appearance-potential spectroscopy (APS) can provide useful information on the electronic structure of solids. Correlations among the valence-band electrons (VV correlations) as well as correlations between the valence-band and the core electrons (CV correlations) are responsible for a variety of effects. StrongVV correlations are well known to give rise to sharp satellites in the spectra, which are related to localized two-hole (electron) final states. On the other hand, the screening of the core-hole potential in the initial state for AES, the sudden response of the valence-band electrons after the destruction of the core hole, and, for APS, the scattering of the valence-band electrons at the core hole are all consequences ofCV correlations. Up to now, however, little is known about the combined influence of both types of correlations on the spectra. We present a new theoretical approach that refers to the general case of a model system with arbitrary band-filling and arbitrary strengths ofVV as well asCV correlations. Remaining restrictions and simplifications concerning the degeneracy of the valence band, the transition matrix elements, etc. can be improved systematically. Of course, this generality can only be achieved at the expense of inevitable approximations in the theoretical formulation. The AES and APS intensities are given by properly defined three-particle Green functions, which are determined by use of a diagrammatic vertex-correction method that is based on the three-particle ladder approximation, which is the main idea of our approach. It is a direct generalization of the two-particle ladder approximation, which in the past has been applied for the calculation of two-particle Green functions that are related to the AES and APS intensities, ifCV correlations can be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weissmann, R., Müller, K.: Surf. Sci. Rep.105, 251 (1981)

    Google Scholar 

  2. Ramaker, D.E.: Crit. Rev. Solid State Mater. Sci.17, 211 (1991)

    Google Scholar 

  3. Almbladh, C.-O., Hedin, L.: in: Handbook on synchrotron radiation, Vol. 1b, pp. 607ff. Koch, E.E. (ed.). Amsterdam: North-Holland 1983

    Google Scholar 

  4. Fuggle, J.C.: In: Electron spectroscopy: theory techniques and applications, Vol. 4, pp. 85ff. Brundle, C.R., Baker, A.D. (eds.). London: Academic Press 1981

    Google Scholar 

  5. Weightman, P.: in: Electronic properties of surfaces, pp. 135ff. Prutton, M. (ed.). Bristol: Hilger 1984

    Google Scholar 

  6. Park, R.L., Houston, J.E.: J. Vac. Sci. Technol.11, 1 (1974)

    Google Scholar 

  7. Lander, J.J.: Phys. Rev.91, 1382 (1953)

    Google Scholar 

  8. Kowalczyk, S.P., Pollak, R.A., McFeely, F.R., Ley, L., Shirley, D.A.: Phys. Rev. B8, 2387 (1973); Yin, L., Adler, I., Tsang, T., Chen, M.H., Craseman, B.: Phys. Lett.46A, 113 (1973); Bassett, P.J., Gallon, T.E., Matthew, J.A.D., Prutton, M.: Surf. Sci.35, 63 (1973); Baró, A.M., Salmerón, M., Rojo, J.M.: J. Phys. F5, 826 (1975); Houston, J.E.: J. Vac. Sci. Technol.12, 255 (1975); Yin, L., Tsang, T., Adler, I.: Phys. Rev. B15, 2974 (1977); Feibelman, P.J., McGuire, E.J.: Phys. Rev. B15, 3575 (1977); McGilp, J.F., Weightman, P.: J. Phys. C11, 643 (1978); Weightman, P., Andrews, P.T.: J. Phys. C12, 943 (1979)

    Google Scholar 

  9. Powell, C.J., Erickson, N.E., Ramaker, D.E.: Phys. Scr. T41, 175 (1992)

    Google Scholar 

  10. Kucherenko, Y.N.: J. Electron. Spectrosc. Relat. Phenom.53, 39 (1992)

    Google Scholar 

  11. Okada, K., Kotani, A., Ogasawara, H., Seino, Y., Thole, B.T.: Phys. Rev. B47, 6203 (1993)

    Google Scholar 

  12. Gunnarsson, O., Schönhammer, K.: in: Handbook on the physics and chemistry of rare earths, Vol. 10, pp. 103ff. Gschneidner, K.A., Eyring, L., Hüfner, S. (eds.). Amsterdam: North-Holland 1987

    Google Scholar 

  13. Nolting, W., Borstel, G., Borgiel, W.: Phys. Rev. B37, 7663 (1988)

    Google Scholar 

  14. Steiner, M.M., Albers, R.C., Sham, L.J.: Phys. Rev. B45, 13272 (1992)

    Google Scholar 

  15. Braun, J., Borstel, G., Nolting, W.: Phys. Rev. B46, 3510 (1992)

    Google Scholar 

  16. Nolting, W., Haunert, L., Borstel, G.: Phys. Rev. B46, 4426 (1992)

    Google Scholar 

  17. Nolting, W., Dambeck, T., Borstel, G.: Z. Phys. B90, 413 (1993)

    Google Scholar 

  18. Allenspach, R., Mauri, D., Taborelli, M., Landolt, M.: Phys. Rev. B35, 4801 (1987)

    Google Scholar 

  19. Stoppmanns, P., Schmiedeskamp, B., Vogt, B., Müller, N., Heinzmann, U.: Phys. Scr. T41, 190 (1992)

    Google Scholar 

  20. Feibelman, P.J., McGuire, E.J., Pandey, K.C.: Phys. Rev. B15, 2202 (1977)

    Google Scholar 

  21. Hörmandinger, G., Weinberger, P., Redinger, J.: Phys. Rev. B40, 7989 (1989)

    Google Scholar 

  22. Szunyogh, L., Weinberger, P., Redinger, J.: Phys. Rev. B46, 2015 (1992)

    Google Scholar 

  23. Jennison, D.R.: Phys. Rev. B18, 6865 (1978)

    Google Scholar 

  24. Davies, M., Jennison, D.R., Weightman, P.: Phys. Rev. B29, 5313 (1984)

    Google Scholar 

  25. Cini, M.: Solid State Commun.24, 681 (1977)

    Google Scholar 

  26. Sawatzky, G.A.: Phys. Rev. Lett.39, 504 (1977)

    Google Scholar 

  27. Sawatzky, G.A., Lenselink, A.: Phys. Rev. B21, 1790 (1980)

    Google Scholar 

  28. Kanamori, J.: Prog. Theor. Phys.30, 275 (1963)

    Google Scholar 

  29. Drchal, V.: J. Phys: Condensed Matter1, 4773 (1989)

    Google Scholar 

  30. Kotrla, M., Drchal, V.: J. Phys.: Condensed Matter4, 4251 (1992)

    Google Scholar 

  31. Tréglia, G., Desjonqueres, M.C., Ducastelle, F., Spanjaard, D.: J. Phys. C14, 4347 (1981)

    Google Scholar 

  32. Drchal, V., Kudrnovský, J.: J. Phys. F14, 2443 (1984)

    Google Scholar 

  33. Nolting, W.: Z. Phys. B80, 73 (1990)

    Google Scholar 

  34. Nolting, W., Geipel, G., Ertl, K.: Phys. Rev. B44, 12197 (1991)

    Google Scholar 

  35. Cini, M.: Phys. Scr. T41, 59 (1992)

    Google Scholar 

  36. Cini, M., Verdozzi, C.: Solid State Commun.57, 657 (1986)

    Google Scholar 

  37. Nolting, W., Geipel, G., Ertl, K.: Phys. Rev. B45, 5790 (1992)

    Google Scholar 

  38. Presilla, C., Sacchetti, F.: J. Phys. F17, 779 (1987)

    Google Scholar 

  39. Kotrla, M., Drchal, V.: J. Phys.: Condensed Matter1, 4783 (1989)

    Google Scholar 

  40. Nolting, W., Geipel, G., Ertl, K.: Z. Phys. B92, 75 (1993)

    Google Scholar 

  41. Natta, M., Joyes, P.: J. Phys. Chem. Solids31, 447 (1970)

    Google Scholar 

  42. Mahan, G.D.: Phys. Rev.163, 612 (1967)

    Google Scholar 

  43. Nozières, P., DeDominicis, C.T.: Phys. Rev.178, 1097 (1969)

    Google Scholar 

  44. Almbladh, C.-O., Morales, A.L., Grossmann, G.: Phys. Rev. B39, 3489 (1989)

    Google Scholar 

  45. Almbladh, C.-O., Morales, A.L.: Phys. Rev. B39, 3503 (1989)

    Google Scholar 

  46. Barth, U. von, Grossmann, G.: Phys. Rev. B25, 5150 (1982)

    Google Scholar 

  47. Ramaker, D.E.: Phys. Rev. B25, 7341 (1982)

    Google Scholar 

  48. Potthoff, M., Braun, J., Borstel, G., Nolting, W.: Phys. Rev. B47, 12480 (1993)

    Google Scholar 

  49. Cini, M.: Surf. Sci.87, 483 (1979)

    Google Scholar 

  50. Potthoff, M., Braun, J., Nolting, W., Borstel, G.: J. Phys.: Condensed Matter5, 6879 (1993)

    Google Scholar 

  51. Parry, W.E.: The many-body problem. Oxford: Clarendon Press 1973

    Google Scholar 

  52. Rickayzen, G.: Green's functions and condensed matter. London: Academic Press 1980

    Google Scholar 

  53. Penn, D.R.: Phys. Rev. Lett.42, 921 (1979)

    Google Scholar 

  54. Liebsch, A.: Phys. Rev. Lett.43, 1431 (1979)

    Google Scholar 

  55. Geipel, G., Nolting, W.: Phys. Rev. B38, 2608 (1988)

    Google Scholar 

  56. Nolting, W., Borgiel, W.: Phys. Rev. B39, 6962 (1989)

    Google Scholar 

  57. Bei der Kellen, S., Nolting, W., Borstel G.: Phys. Rev. B42, 447 (1990)

    Google Scholar 

  58. Nolting, W., Bei der Kellen, S., Borstel, G.: Phys. Rev. B43, 1117 (1991)

    Google Scholar 

  59. Hubbard, J.: Proc. R. Soc. A276, 238 (1963)

    Google Scholar 

  60. Baker, C.T.H.: The numerical treatment of integral equations. Oxford: Clarendon Press 1977

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potthoff, M., Braun, J. & Borstel, G. The three-particle ladder approximation as a new approach towards a general theory of electron-correlation effects inCVV Auger-electron and appearance-potential spectroscopy. Z. Physik B - Condensed Matter 95, 207–223 (1994). https://doi.org/10.1007/BF01312194

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01312194

PACS

Navigation