Skip to main content
Log in

Brownian motion in a periodic potential: Application to dielectric relaxation

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The relaxational dynamics of a planar rotator in anM-fold cosine potential subject to a random torque is investigated in detail. For the case of a periodic potential with large barrier height, the numerical results of the relaxation dynamics are in complete agreement with an approximate analytical solution. The latter, is derived on assuming a harmonic potential at the bottom of the potential minima and a large time-scale separation between the short-time libration inside each potential minima and a long-time hopping phenomenon over the potential barriers. ForM≧2, the hopping phenomenon is found to be the dominant feature of the orientational autocorrelation function. The average hopping time is explained satisfactorily in terms of the Kramers activation rate theory. In particular a complete agreement is found between the numerical results of the escape rate and those obtained from the modified Kramers' predictions valid for low friction coefficient. The cosine model is applied to the study of dielectric spectroscopy. The particle mobility and the complex permitivity, of a dielectric material are calculated by numerical solutions for rotational velocity and orientational auto-correlation functions, respectively. The main features of the experimental observables are determined analytically and compared to the corresponding numerical results. The applicability of the plane rotator model to dielectric spectroscopy is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dieterich, W., Peschel, I., Schneider, W.R.: Z. Phys. B—Condensed Matter and Quanta27, 177 (1977)

    Google Scholar 

  2. Dieterich, W., Geisel, I., Peschel, I.: Z. Phys. B—Condensed Matter and Quanta29, 12 (1978)

    Google Scholar 

  3. Risken, H., Vollmer, H.D.: Z. Phys. B—Condensed Matter and Quanta31, 209 (1978)

    Google Scholar 

  4. Risken, H., Vollmer, H.D., Denk, H.: Phys. Lett.78A, 22 (1980)

    Google Scholar 

  5. Vollmer, H.D., Risken, H.: Z. Phys. B—Condensed Matter and Quanta34, 313 (1978)

    Google Scholar 

  6. Dianoux, A.J., Volino, F.: Molec. Phys.34, 1263 (1977)

    Google Scholar 

  7. Grosso, G., Pastori-Parravicini, G.: Advances in Chemical Physics. Special issue ‘Memory Function Approach to Stochastic Problems in Condensed Matter’. Evans, M.W., Grigolini, P., Pastori-Parravicini, G. (eds.) (to be published)

  8. Marchesoni, F.: Phys. Scr.30, 19 (1984)

    Google Scholar 

  9. Reid, C.J.: Mol. Phys.49, 331 (1983)

    Google Scholar 

  10. Risken, H.: The Fokker-Planck Equation; the methods of solution and applications. Chap. 9. Springer-Verlag 1984

  11. Risken, H., Vollmer, H.D.: Mol. Phys.46, 555 (1982)

    Google Scholar 

  12. Coffey, W.T., Evans, M.W., Grigolini, P.: Molecular diffusion and spectra. Chap. 5. New York: Wiley Interscience 1981

    Google Scholar 

  13. Praestgaard, E., Kampen, M.G. van: Mol. Phys.43, 33 (1981)

    Google Scholar 

  14. Kramers, H.A.: Physica7, 284 (1940)

    Google Scholar 

  15. Chandrasekhar, S.: Rev. Mod. Phys.15, 1 (1943)

    Google Scholar 

  16. Evans, M.W., Grigolini, P., Marchesoni, F.: Chem. Phys. Lett.95, 544, 548 (1983)

    Google Scholar 

  17. Marchesoni, F., Grigolini, P.: Physica A121, 269 (1983)

    Google Scholar 

  18. Scaife, B.K.P.: Complex permitivity., The English University Press 1971

  19. Büttiker, M., Harris, E.P., Landauer, R.: Phys. Rev. B28, 1268 (1983)

    Google Scholar 

  20. Stratonovitch, R.L.: Topics in the Theory of Random Noise. Vol. 1, p. 79 and ff. New York: Gordon and Breach 1967

    Google Scholar 

  21. Hänggi, P., Marchesoni, F., Grigolini, P.: Z. Phys. B—Condensed Matter56, 333 (1984)

    Google Scholar 

  22. Fonseca, T., Gomes, J.A.M.F., Grigolini, P., Marchesoni, F.: Adv. Chem. Phys. (to be Published);

  23. Marchesoni, F.: Adv. Chem. Phys. (to be published)

  24. Marchesoni, F.: Chem. Phys. Lett.110, 20 (1984)

    Google Scholar 

  25. Marchesoni, F., Grigolini, P.: J. Chem. Phys.78, 6287 (1983)

    Google Scholar 

  26. Hänggi, P., Weiss, U.: Phys. Rev. A29, 2265 (1984)

    Google Scholar 

  27. See e.g. Fröhlich, H.: Theory of dielectrics. p. 91. Oxford: Oxford University Press 1958

    Google Scholar 

  28. Vij, J.K., Scaife, W.G., Calderwood, J.H.: J. Phys. D14, 733 (1981)

    Google Scholar 

  29. Crossley, J.: Adv. Mol. Relaxation Processes2, 69 (1970)

    Google Scholar 

  30. Reid, C.J., Vij, J.K.: J. Chem. Phys.79, 4624 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Jan. 1st 1985: Institut für Theoretische Physik, RWTH, Aachen, FRG

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchesoni, F., Vij, J.K. Brownian motion in a periodic potential: Application to dielectric relaxation. Z. Physik B - Condensed Matter 58, 187–198 (1985). https://doi.org/10.1007/BF01309250

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01309250

Keywords

Navigation