Skip to main content
Log in

The concept of effective tension for fluctuating vesicles

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Vesicles are closed surfaces of bilayer membranes. Their mean shapes and fluctuations are governed by the competition of curvature energy and geometrical constraints on the enclosed volume and total surface area. A scheme to calculate these fluctuations to lowest order in the ratio of temperature to bending rigidity is developed. It is shown that for fluctuations that break a symmetry of the mean shape the area constraint indeed acts like a tension whose value is given by the Lagrange multiplier used to enforce the area constraint in the first place. As a consequence, these fluctuations are also insensitive to the specific variants of the curvature model. For fluctuations that preserve the symmetry of the mean shape the role of the area constraint is more subtle. The low temperature expansion breaks down in the spherical limit where with the excess area another small parameter enters. By incorporating the area constraint in this limit exactly, the validity of the conventional approach using an effective tension for fluctuations of quasi-spherical vesicles can be assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For reviews, see (a) R. Lipowsky, Nature349, 475 (1991);

    Google Scholar 

  2. M. Wortis, U. Seifert, K. Berndl, B. Fourcade, L. Miao, M. Rao, and R. Zia, inDynamical phenomena at interfaces, surfaces and membranes, edited by D. Beysens, N. Boccara, and G. Forgacs (Nova Science, New York, 1993), pp. 221–236

    Google Scholar 

  3. U. Seifert and R. Lipowsky, in Handbook of Physics of Biological Systems, vol. 1, edited by R. Lipowsky and E. Sackmann (Elsevier, Amsterdam 1994).

    Google Scholar 

  4. P. Canham, J. Theoret. Biol.26, 61 (1970).

    Google Scholar 

  5. W. Helfrich, Z. Naturforsch.28c, 693 (1973).

    Google Scholar 

  6. E. Evans, Biophys. J.14, 923 (1974).

    Google Scholar 

  7. H. Deuling and W. Helfrich, J. Physique37, 1335 (1976).

    Google Scholar 

  8. S. Svetina and B. Zeks, Eur. Biophys. J.17, 101 (1989)

    Google Scholar 

  9. U. Seifert, K. Berndl, and R. Lipowsky, Phys. Rev. A44, 1182 (1991).

    Google Scholar 

  10. L. Miao, B. Fourcade, M. Rao, M. Wortis, and R. Zia, Phys. Rev. A43, 6843 (1991).

    Google Scholar 

  11. K. Berndl, J. Käs, R. Lipowsky, E. Sackmann, and U. Seifert, Europhys. Lett.13, 659 (1990).

    Google Scholar 

  12. W. Helfrich and R.-M. Servuss, Il Nuovo Cimento3D, 137 (1984).

    Google Scholar 

  13. S. Milner and S. Safran, Phys. Rev. A36, 4371 (1987).

    Google Scholar 

  14. E. Evans and W. Rawicz, Phys. Rev. Lett.64, 2094 (1990).

    Google Scholar 

  15. F. David and S. Leibler, J. Phys. II France1, 959 (1991).

    Google Scholar 

  16. M. Schneider, J. Jenkins, and W. Webb, J. Phys.45, 1457 (1984).

    Google Scholar 

  17. H. Engelhardt, H. Duwe, and E. Sackmann, J. Physique Lett.46, L395 (1985)

    Google Scholar 

  18. I. Bivas, P. Hanusse, P. Bothorel, J. Lalanne, and O. Aguerre-Chariol, J. Phys.48, 855 (1987).

    Google Scholar 

  19. J. Faucon, M. Mitov, P. Meleard, I. Bivas, and P. Bothorel, J. Phys. France50, 2389 (1989).

    Google Scholar 

  20. H. Duwe, J. Käs, and E. Sackmann, J. Phys. France51, 945 (1990).

    Google Scholar 

  21. P. Meleard, J. Faucon, M. Mitov, and P. Bothorel, Europhys. Lett.19, 267 (1992).

    Google Scholar 

  22. M. Peterson, J. Math. Phys.26, 711 (1985).

    Google Scholar 

  23. M. Peterson, J. Appl. Phys.57, 1739 (1985).

    Google Scholar 

  24. M. Peterson, Mol. Cryst. Liq. Cryst.127, 159 (1985).

    Google Scholar 

  25. M. Peterson, H. Strey, and E. Sackmann, J. Phys. II France2, 1273 (1992).

    Google Scholar 

  26. M. Peterson, Phys. Rev. A45, 4116 (1992).

    Google Scholar 

  27. E. Evans, Biophys. J.30, 265 (1980).

    Google Scholar 

  28. S. Svetina and B. Zeks, Biochemica et Biophysica Acta42, 86 (1983).

    Google Scholar 

  29. U. Seifert, L. Miao, H.-G. Döbereiner, and M. Wortis, inThe Structure and Conformation of Amphiphilic Membranes, Vol. 66 ofSpringer Proceedings in Physics, edited by R. Lipowsky, D. Richter, and K. Kremer (Springer, Berlin, 1991), pp. 93–96.

    Google Scholar 

  30. W. Wiese, W. Harbich, and W. Helfrich, J. Phys.: Cond. Matter4, 1647 (1992).

    Google Scholar 

  31. B. Bozic, S. Svetina, B. Zeks, and R. Waugh, Biophys. J.61, 963 (1992).

    Google Scholar 

  32. L. Miao, U. Seifert, M. Wortis, and H.-G. Döbereiner, Phys. Rev. E49, 5389 (1994).

    Google Scholar 

  33. R. Waugh, J. Song, S. Svetina, and B. Zeks, Biophys. J.61, 974 (1992).

    Google Scholar 

  34. A. Yeung, Ph.D. thesis, University of British Columbia, 1994.

  35. M. Nikolic, U. Seifert, and M. Wortis, in preparation.

  36. M. Peterson, Phys. Rev. A39, 2643 (1989).

    Google Scholar 

  37. W. Helfrich, J. Physique47, 321 (1986).

    Google Scholar 

  38. Z.-C. Ou-Yang and W. Helfrich, Phys. Rev. A39, 5280 (1989).

    Google Scholar 

  39. I. Bivas, L. Bivolarski, M. Mitov, and A. Derzhanski, J. Phys. II12, 1423 (1992).

    Google Scholar 

  40. W. Helfrich, J. Physique48, 285 (1987).

    Google Scholar 

  41. P. Nelson and T. Powers, J. Phys. II France3, 1535 (1993).

    Google Scholar 

  42. W. Cai, T. Lubensky, P. Nelson, and T. Powers, J. Phys. II France4, 931 (1994).

    Google Scholar 

  43. D. Morse and S. Milner, Europhys. Lett.26, 565 (1994).

    Google Scholar 

  44. D. Morse and S. Milner, Statistical Mechanics of Finite Fluid Membranes, preprint, 1994.

  45. I thank D. Morse, T. Lubensky and P. Nelson for illuminating discussions on the Liouville factor.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Herbert Wagner on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seifert, U. The concept of effective tension for fluctuating vesicles. Z. Physik B - Condensed Matter 97, 299–309 (1995). https://doi.org/10.1007/BF01307480

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01307480

PACS

Navigation