Skip to main content
Log in

Wavelength selection in Rayleigh-Bénard convection

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Rayleigh-Bénard convection is considered in the presence of a weakly nonuniform temperature distribution and weakly nonuniform layer height with their gradients perpendicular to the (parallel) convection rolls. In the infinite Prandtl number limit the phase equation that describes the slow spatial and temporal evolution of the local wave number is derived. Evaluating the equation near threshold and for stress-free boundary conditions we find nonuniversal wavenumber selection, forced phase diffusion with moving patterns, and other measurable effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kramer, L., Ben-Jacob, E., Brand, H., Cross, M.C.: Phys. Rev. Lett.49, 1891 (1982)

    Google Scholar 

  2. Hohenberg, P.C., Kramer, L., Riecke, H.: Physica D (in press)

  3. Koschmieder, E.L.: Beitr. Phys. Atmosph.39, 208 (1966)

    Google Scholar 

  4. Cannell, D.S., Dominguez-Lerma, M.A., Ahlers, G.: Phys. Rev. Lett.50, 1365 (1983); Private communication.

    Google Scholar 

  5. Nonuniform heating and nonuniform layer height in Rayleigh-Bénard convection were considered for a different purpose by Kelly R.E., Pal, D.: J. Fluid Mech.86, 433 (1978)

    Google Scholar 

  6. The collapse of the wave number band to lowest order above threshold in Rayleigh-Bénard convection with perturbed lower walls was noticed by Eagles, P.M.: Proc. R. Soc. London Ser. A371, 359 (1980).

    Google Scholar 

  7. For calculations in a realistic equilibrium system, where the selected wavelength corresponds to the minimum of the (free) energy, see Zimmermann, W., Kramer, L.: J. Phys. (Paris)46, (in press)

  8. Busse, F.H., Bolton, E.W.: J. Fluid. Mech.146, 115 (1984)

    Google Scholar 

  9. See e.g. Kamke, E.: Differentialgleichungen. Vol. I, p. 28. Leipzig: Akademische Verlagsgesellschaft 1959

    Google Scholar 

  10. Cross, M.C., Daniels P.G., Hohenberg, P.C., Siggia, E.D.: J. Fluid. Mech.127, 155 (1983)

    Google Scholar 

  11. Pocheau, A.: Thèse de 3ème cycle, Université Paris-6, 1983; Croquette V.: Private communication

  12. Cross, M.C.: Phys. Rev. A29 391 (1984)

    Google Scholar 

  13. Pomeau, Y., Zaleski, S.: J. Phys. (Paris) Lett.44, L 135 (1983)

    Google Scholar 

  14. Kramer, L., Hohenberg, P.C.: Physica13 D, 357 (1984)

    Google Scholar 

  15. Zierep, J.: In: Convective transport and instability phenomena. Zierep, J., Oertel, H., Jr. (eds.), p. 25. Karlsruhe: Braun Verlag 1982

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, L., Riecke, H. Wavelength selection in Rayleigh-Bénard convection. Z. Physik B - Condensed Matter 59, 245–251 (1985). https://doi.org/10.1007/BF01307426

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01307426

Keywords

Navigation