Skip to main content
Log in

A proposal for thermal conductivity standards with special respect to convection and radiation effects

Ein Vorschlag für Wärmeleitfähigkeitsstandards unter besonderer Berücksichtigung der Konvektion und Strahlung

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

The influence of convection and especially radiation on measured liquid thermal conductivities is discussed for steady state methods and the transient hot wire method. New radiation and convection free thermal conductivity data are given for a mixture of 90% toluene and 10% ethanol, and for mono-, di-, and triethyleneglycol. The glycols are suitable as thermal conductivity standards for steady state methods and the transient hot wire method.

Zusammenfassung

Für stationäre Meßmethoden und für die instationäre Hitzdrahtmethode wird der Einfluß der Konvektion und der Strahlung auf die gemessene Wärmeleitfähigkeit von Flüssigkeiten diskutiert. Neue strahlungs- und konvektionsfreie Wärmeleitfähigkeitswerte werden für ein Gemisch aus 90% Toluol und 10% Ethanol und für Mono-, Diund Triethylenglycol angegeben. Die Glycole sind als Wärmeleitfähigkeitsstandard sowohl für stationäre Methoden als auch für die instationäre Hitzdrahtmethode geeignet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fischer, S.; Obermeier, E.: Influence of thermal radiation heat transfer on effective liquid thermal conductivities; experimental and theoretical investigation. Proc. 9th ETPC 17–21 Sep. 1984, to be published in High Temp. High Pressures

  2. Nagasaka, Y.; Nagashima, A.: Precise measurements of the thermal conductivity of toluene and n-heptane by the absolute transient hot wire method. Ind. Eng. Chem. Fundam. 20 (1981) 216–220

    Google Scholar 

  3. Brykov, V. P.; Mukhamedzyanov, G. Kh.; Usmanov, A. G.: Experimental investigation of the thermal conductivity of organic fluids at low temperatures. Inzh. Fiz. Zh. 18 (1970) 82–89

    Google Scholar 

  4. Ganiev, Yu.; Rastorguev, Yu. L.: Thermal conductivity of organic liquids. Inzh. Fiz. Zh. 33 (1974) 733–737

    Google Scholar 

  5. Geller, V. Z.; Paramonov, I. A.; Slyusarev, V. V.: Experimental study concerning the contribution of the radiative component to the effective thermal conductivity of toluene. J. Eng. Phys. 33 (1974) 733–737

    Google Scholar 

  6. Rastorguev, Yu. L.; Ganiev, Yu. A.; Safronov, G. A.: Some problems in measuring thermal conductivity using the coaxial cylinders method. II. Inz. Fiz. Zh. 33 (1977) 275–279

    Google Scholar 

  7. Leidenfrost, W.: High-precision measurements of thermal conductivity of fluids by an absolute technique. New Measurements on Toluene. High Temp. High Pressures 11 (1979) 561–569

    Google Scholar 

  8. Poltz, H.; Jugel, R.: The thermal conductivity of liquids — IV. Temperature dependence of thermal conductivity. Int. J. Heat Mass Transfer 10 (1967) 1075–1088

    Google Scholar 

  9. Schödel, G.; Grigull, U.: Kombinierte Wärmeleitung und Wärmestrahlung in Flüssigkeiten. Proc. 4th Int. Heat Transfer Conference Paris 1970, Vol. III R 2

    Google Scholar 

  10. Gurenkova, T. V.; Norden, P. A.; Usmanov, A. G.: On the role of the radiant component of the effective coefficient of the thermal conductivity of liquids. Fluid Mechanics-Sov. Research 3 (1974) 114–118

    Google Scholar 

  11. Ogiwara, K.; Arai, Y.; Saito, S.: Thermal conductivities of liquids hydrocarbons and their binary mixtures. Ind. Eng. Chem. Fundam. 19 (1980) 295–300

    Google Scholar 

  12. Fischer, S.: Experimentelle und theoretische Untersuchung des Einflusses der thermischen Strahlung auf die effektive Wärmeleitfähigkeit von Flüssigkeiten. Diss. Univ.-GH Siegen, 1984

  13. Castro, C. A. N.; Li, S. F. Y.; Maitland, G. C.; Wakeham, W. A.: Thermal conductivity of toluene in the temperature range 35–90°C at pressures up to 600 MPa. Int. J. of Thermophys. 4 (1981) 311–327

    Google Scholar 

  14. Raal, J. D.; Rijsdijk, R. L.: Measurements of alcohol thermal conductivities using a relative strain compensated hot-wire method. J. Chem. Eng. Data 26 (1981) 351–359

    Google Scholar 

  15. Saito, A.: Review of the transient line source technique. Bull. JSME 23 (1980) 1459–1466

    Google Scholar 

  16. Castro, C. A. N.; Calado, J. C. G.; Wakeham, W. A.: Absolute measurements of the thermal conductivity of liquids using a transient hot wire technique. Proc. 7th Symp. Thermoph. Properties 1977, Washington, American Soc. of Mech. Eng. 730–738

    Google Scholar 

  17. Staat, H.; Korte, E. H.: Determination of molar IR absortivitics and their errors. J. Mol. Struct. 114 (1984) 297–300

    Google Scholar 

  18. Braun, R.; Schaber, A.: A rotating annulus device for precise thermal conductivity measurements on liquids. Values for ethanol, JP-4, and R-113. Proc. 17th Int. Conf. Thermal Conductivity 1981, New York. Plenum Press, 1983

    Google Scholar 

  19. Braun, R.; Fischer, S.; Schaber, A.: Elimination of the radiant component of measured liquid thermal conductivities. Wärme-Stoffübertrag. 17 (1983) 121–124

    Google Scholar 

  20. Schrader, B.; Meier, W.: DMS Raman/IR Atlas. Verlag Chemie, Weinheim 1974

    Google Scholar 

  21. Staat, H.: Private Communication, 1984

  22. Bohne, D.; Fischer, S.; Obermeier, E.: Thermal conductivity, density, viscosity and Prandtl-numbers of ethylene glycolwater mixtures. Ber. Bunsenges. Phys. Chem. 88 (1984) 739–742

    Google Scholar 

  23. Braun, R: Experimentelle Bestimmung der Wärmeleitfähigkeit von Flüssigkeiten mit einem konvektionsfreien Verfahren unter Berücksichtigung der thermischen Strahlung. Diss. Univ.-GH Siegen, 1980

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, S. A proposal for thermal conductivity standards with special respect to convection and radiation effects. Wärme- und Stoffübertragung 20, 183–187 (1986). https://doi.org/10.1007/BF01303449

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01303449

Keywords

Navigation