Skip to main content
Log in

A continuum theory for two phase media

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A continuum theory of a two phase solid-fluid media is formulated. The basic balance laws for the solid phase as well as for the fluid phase are presented. Based on thermodynamical consideration a set of constitutive equations are derived and the basic equations of motions of the distributed solid and fluid continua are obtained and discussed. It is shown that the theory contains as its special cases, Mohr-Coulomb criterion of limiting equilibrium of granular materials, Saffman theory of dusty gas, as well as Darcy's law of flow through porous media. It is then concluded that the present theory covers the full spectrum of two phase solid-fluid media from low porosity granular media with Darcy's law of fluid motion to low and high concentration two phase flows such as dusty gas and blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coulomb, C. A.: Essai sur une application des règles des maximis ou minimis à quelques problèmes de statique relative à l'architecture. Mém. Acad. Roy. Divers Sav.5, 383 (1767).

    Google Scholar 

  2. Kötter, F.: Die Bestimmung des Druckes an gekrümmten Gleitflächen, eine Aufgabe aus der Lehre vom Erddruck. Berlin: Akad. berichte 1903.

    Google Scholar 

  3. Sokolovskii, V. V.: Statics of granular media. London: Pergamon Press 1965.

    Google Scholar 

  4. Drucker, D. C., Prager, W.: Solid mechanics and plastic analysis of limit design. Quart. Appl. Math.10, 157 (1952).

    Google Scholar 

  5. Shield, R. T.: On Coulomb's law of failure in solids. J. Mech. Phys. Solids4, 10 (1955).

    Google Scholar 

  6. Biot, M. A.: Theory of propagation of elastic waves in fluid saturated porous solid-I, low frequency range. J. Acoust. Soc. Am.28, 168 (1956).

    Google Scholar 

  7. Biot, M. A.: The elastic coefficients of the theory of consolidation. J. Appl. Mech.24, 594 (1957).

    Google Scholar 

  8. Deresiewicz, H.: Mechanics of granular matter. Adv. Appl. Mech.5, 233 (1958).

    Google Scholar 

  9. Truesdell, C., Toupin, R. A.: The classical field theories, in: Handbuch der Physik, Vol. III/I (Flügge, S., ed.). Berlin-Göttingen-Heidelberg: Springer 1960.

    Google Scholar 

  10. Truesdell, C.: Mechanical basis of diffusion. J. Chem. Phys.37, 2336 (1962).

    Google Scholar 

  11. Eringen, A. C., Ingram, J. D.: A continuum theory of chemically reacting media-I. Int. J. Engng. Sci.3, 197 (1963).

    Google Scholar 

  12. Green, A. E., Naghdi, P. M.: A dynamical theory of interacting continua. Int. J. Engineering Sci.3, 231 (1965).

    Google Scholar 

  13. Bown, R. M.: Theory of mixture, in: Continuum Physics, Vol. III (Eringen, A. C., ed.). Academic Press 1976.

  14. Crochet, M. J., Naghdi, P. M.: On constitutive equations for flow of fluid through an elastic solid. Int. J. Engng. Sci.4, 383 (1966).

    Google Scholar 

  15. Ahmadi, G., Manvi, R.: Equation of motion for viscous flow through rigid porous medium. Indian J. Tech.9, 441 (1971).

    Google Scholar 

  16. Ahmadi, G., Farshad, M.: On the continuum theory of solid-fluid mixture — A supermiposed model of equipresent constituents. Indian J. Tech.12, 195 (1974).

    Google Scholar 

  17. Goodman, M. A., Cowin, S. C.: Two problems in the gravity flow of granular materials. J. Fluid Mech.45, 321 (1971).

    Google Scholar 

  18. Goodman, M. A., Cowin, S. C.: A continuum theory for granular materials. Arch. Rat. Mech. Anal.44, 249 (1972).

    Google Scholar 

  19. Jenkins, J. T.: Static equilibrium of granular materials. J. Appl. Mech.42, 603 (1975).

    Google Scholar 

  20. Passman, S. L.: Mixtures of granular materials. Int. J. Engng. Sci.15, 117 (1977).

    Google Scholar 

  21. Ahmadi, G., Sohrabpour, S.: Elasto-viscoplastic-viscous theories of granular and porous media. Int. J. Nonlinear Mech.14, 133 (1979).

    Google Scholar 

  22. Shahinpoor, M., Ahmadi, G.: Free energy of granular materials in static equilibrium. J. Appl. Mech. Trans. ASME46, 944 (1979).

    Google Scholar 

  23. Ahmadi, G.: On mechanics of saturated granular materials. Int. J. Nonlinear Mech.15, 251 (1980).

    Google Scholar 

  24. Ahmadi, G.: A generalized continuum theory for granular materials. Int. J. Nonlinear Mech. (in press).

  25. Ericksen, J. L.: Anisotropic fluids. Arch. Rat. Mech. Anal.4, 231 (1960).

    Google Scholar 

  26. Ericksen, J. L.: Transversely isotropic fluids. Kolloidzeitschrift173, 117 (1960).

    Google Scholar 

  27. Leslie, F. M.: Some constitutive equations for liquid crystals. Arch. Rat. Mech. Anal.28, 265 (1968).

    Google Scholar 

  28. Ericksen, J. L.: Conservation laws for liquid crystals. Trans. Soc. Rheol.5, 23 (1961).

    Google Scholar 

  29. Cosserat, E. and F.: Théories des corps deformables. Paris: 1909.

  30. Toupin, R. A.: Elastic materials with couple stress. Arch. Rat. Mech. Anal.11, 385 (1962).

    Google Scholar 

  31. Mindlin, R. D., Tiersten, H. F.: Effect of couple stresses in linear elasticity. Arch. Rat. Mech. Anal.11, 415 (1962).

    Google Scholar 

  32. Eringen, A. C., Suhubi, E. S.: Non-linear theory of simple micro-elastic solids-I. Int. J. Engng. Sci.2, 189 (1964).

    Google Scholar 

  33. Mindlin, R. D.: Microstructure in linear elasticity. Arch. Rat. Mech. Anal.16, 51 (1964).

    Google Scholar 

  34. Eringen, A. C.: Simple microfluids. Int. J. Engng. Sci.2, 205 (1964).

    Google Scholar 

  35. Eringen, A. C.: Linear theory of micropolar elasticity. J. Math. Mech.15, 909 (1966).

    Google Scholar 

  36. Eringen, A. C.: Theory of micropolar fluids. J. Math. Mech.16, 1 (1966).

    Google Scholar 

  37. Eringen, A. C.: Foundation of micropolar thermoelasticity (CISM). Wien-New York: Springer 1970.

    Google Scholar 

  38. Ahmadi, G., Koh, S. L., Goldschmidt, V. W.: A theory of nonsimple microfluids, in: Recent Advances in Engineering Science, Vol. 5. Gordon and Breach 1970.

  39. Ahmadi, G., Koh, S. L., Goldschmidt, V. W.: Mechanics of a second order microfluid. Iranian J. Sci. Tech.1, 233 (1971).

    Google Scholar 

  40. Shahinpoor, M., Ahmadi, G.: Stability of Cosserat fluid motions. Arch. Rat. Mech. Anal.47, 183 (1972).

    Google Scholar 

  41. Ahmadi, G., Firoozbakhsh, K.: First strain gradient theory of thermoelasticity. Int. J. Solids Struct.11, 339 (1975).

    Google Scholar 

  42. Ahmadi, G.: Mechanics of a second-order micro-elastic solids. Rheol. Acta14, 710 (1975).

    Google Scholar 

  43. Ahmadi, G.: Special theories of heat conducting microfluids. Bull. Acad. Polon. Sci.27, 69 (1979).

    Google Scholar 

  44. Soo, S. L.: Fluid dynamics of multiphase systems. Waltham, Mass.: Blaisdell 1967.

    Google Scholar 

  45. Brenner, H.: Rheology of two phase systems. Ann. Rev. Fluid Mech.2, 137 (1970).

    Google Scholar 

  46. Batchelor, G. K.: Sedimentation in a dilute dispersion of spheres. J. Fluid Mech.52, 245 (1972).

    Google Scholar 

  47. Batchelor, G. K., Green, J. T.: The determination of the bulk stress in a suspension of spherical particles to order C2. J. Fluid Mech.56, 401 (1972).

    Google Scholar 

  48. Drew, D. A., Segel, L. A.: Averaged equations for two-phase flows. Studies in Appl. Math.50, 205 (1971).

    Google Scholar 

  49. Kline, K. A., Allen, S. J.: On continuum theories of suspensions of reformable particles. ZAMP19, 898 (1968).

    Google Scholar 

  50. Kline, K. A., Allen, S. J.: A thermodynamical theory of fluid suspensions. Phys. Fluids14, 1863 (1971).

    Google Scholar 

  51. Ahmadi, G.: Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int. J. Engng. Sci.14, 639 (1976).

    Google Scholar 

  52. Kenyon, D. E.: The theory of an incompressible solid-fluid mixture. Arch. Rat. Mech. Anal.59, 131 (1976).

    Google Scholar 

  53. Drew, D. A.: Two-phase flows: Constitutive equations for lift and Brownian motion and some basic flows. Arch. Rat. Mech. Anal.59, 149 (1976).

    Google Scholar 

  54. Attinger, E. O.: Pulsatile blood flow. New York: McGraw-Hill 1964.

    Google Scholar 

  55. Attinger, E. O.: Hydrodynamics of blood flow, in: Advances in Hydroscience (Chow, V. T., ed.). New York: Academic Press 1966.

    Google Scholar 

  56. Fung, Y. C.: Biomechanics: A survey of the blood flow problem, in: Advances in Applied Mechanics, Vol. 11 (Yih, C. H., ed.). New York: Academic Press 1971.

    Google Scholar 

  57. Fung, Y. C.: Biomechanics, its foundations and objectives. Englewood Cliffs, N.J.: Prentice-Hall 1971.

    Google Scholar 

  58. Ahmadi, G.: Mechanics of blood flow. Iranian J. Sci. Tech.7, 161 (1979).

    Google Scholar 

  59. Merril, E. W., Gilliland, E. R., Cokelet, G., Britten, A., Wells, Jr., R. E.: Rheology of blood and flow in the microcirculation. J. Appl. Physiol.18, 255 (1963).

    Google Scholar 

  60. Merrill, F. W., Gilliland, E. R., Cokelet, G., Shin, H., Britten, A., Wells, Jr., R. E.: Rheology of human blood, near and at zero flow. Biophys. J.3, 199 (1963).

    Google Scholar 

  61. Merrill, F. W., Cheng, C. S., Pelletier, G. A.: Yield stress of normal human blood as a function of endogenous fibrinogen. J. App. Physiol.26, 1 (1969).

    Google Scholar 

  62. Kline, K. A., Allen, S. J.: Concentration effects in oscillatory blood flow. Biorheology6, 99 (1969).

    Google Scholar 

  63. Kline, K. A., Allen, S. J., DeSilva, C. N.: A continuum aproach to blood flow. Biorheology5, 111 (1968).

    Google Scholar 

  64. Kline, K. A., Allen, S. J.: The relationship of pressure gradient to blood velocity based on a continuum theory of blood. J. Biomechanics2, 313 (1969).

    Google Scholar 

  65. Ariman, T.: On the analysis of blood flow. J. Biomechanics4, 185 (1971).

    Google Scholar 

  66. Turk, M. A., Sylvester, N. D., Ariman, T.: On pulsatile blood flow. Trans. Soc. Rheol.17, 1 (1973).

    Google Scholar 

  67. Kang, C. K., Eringen, A. C.: The effect of microstructure on the rheological properties of blood. Bull. Math. Biology38, 135 (1976).

    Google Scholar 

  68. Ahmadi, G.: A continuum theory of blood flow. Scientia Sinica (to appear).

  69. Saffman, P. G.: On the stability of laminar flow of a dusty gas. J. Fluid Mech.13, 120 (1962).

    Google Scholar 

  70. Scheidegger, A. E.: The physics of flow through porous media. Univ. Toronto Press 1974.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadi, G. A continuum theory for two phase media. Acta Mechanica 44, 299–317 (1982). https://doi.org/10.1007/BF01303343

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01303343

Keywords

Navigation