Skip to main content
Log in

Early crop diversity: A “new” glume wheat from northern Greece

  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

At three Neolithic sites and one Bronze Age site in northern Greece, spikelet bases of a “new” type of glume wheat have been recovered. These spikelet bases are morphologically distinct from the typicalTriticum monococcum L. (einkorn),T. dicoccum Schübl. (emmer) andT. spelta L. (spelt) types previously recorded from Greece and they have also been observed at Neolithic and Bronze Age sites in Turkey, Hungary, Austria and Germany. their taxonomic identification remains uncertain but it seems likely that they are tetraploid, and they have morphological features in common withT. timopheevi Zhuk. Various possibilities exist for the origin of this type but, whatever its origin and exact identity, its cultivation has ceased over large geographical areas since the Bronze Age. At the northern Greek sites, at least, the new type may have been cultivated as a maslin (mixed crop) with einkorn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaby RG, Banerjee M, Brown TA (1999) Evolution of the high molecular weight glutenin loci of the A, B, D and G genomes of wheat. Genome 42: 296–307

    Google Scholar 

  • Aniol A (1973) A serological investigation of wheat evolution (abstract). In: Sears ER, Sears LMS (eds) Proceedings of the 4th international wheat genetics symposium. Missouri, p 59

  • Badaeva ED, Shkutina FM, Bogdevich IN, Badaev NS (1986) Comparative study ofTriticum aestivum andT. timopheevi genomes using C-banding technique. Plant Syst Evol 154: 183–194

    Google Scholar 

  • Badaeva ED, Boguslavsky RL, Badaev NS, Zelenin, AV (1990) Intraspecific chromosomal polymorphism ofTriticum araraticum (Poaceae) detected by C-banding technique. Plant Syst Evol 169: 13–24

    Google Scholar 

  • Badaeva ED, Filatenko AA, Badaev NS (1994) Cytogenetic investigation ofTriticum timopheevi (Zhuk.) Zhuk. and related species using the C-banding technique. Theoret Appl Genet 89: 622–628

    Google Scholar 

  • Bozzini A, Giorgi B (1969) Karyotype analysis inTriticum. II. Analysis ofT. araraticum Jakubz. andT. timopheevi Zhuk. and their relationships with other tetraploid wheats. Caryologia 22: 261–268

    Google Scholar 

  • Brown TA (1999) How ancient DNA may help in understanding the origin and spread of agriculture. Phil Trans R Soc London B 354: 89–98

    Google Scholar 

  • Brown TA, Allaby RG, Brown KA, O'Donoghue K, Sallares, R (1994) DNA in wheat seeds from European archaeological sites. Experientia 50: 571–575

    Google Scholar 

  • Brown TA, Allaby RG, Sallares R, Jones G (1998) Ancient DNA in charred wheats: taxonomic identification of mixed and single grains. Biomolec Archaeol 2: 185–193

    Google Scholar 

  • Brown-Guedira GL, Badaeva ED, Gill BS, Cox TS (1996) Chromosome substitutions ofTriticum timopheevi in common wheat and some observations on the evolution of polyploid wheat species. Theoret Appl Genet 93: 1291–1298

    Google Scholar 

  • Charles MP (1989) Agriculture in lowland Mesopotamia in the late Uruk-Early Dynastic period. Unpublished PhD thesis, University College, London

    Google Scholar 

  • Chen PD, Gill BS (1983) The origin of chromosome 4A and genomes B and G of tetraploid wheats. In: Sakomoto S (ed) Proceedings of the 6th international wheat genetics symposium. Kyoto, pp 39–48

  • Dagan J, Zohary D (1970) Wild tetraploid wheats from west Iran cytogenetically identical with IsraeliT. dicoccoides. Wheat Information Service 31: 15–17

    Google Scholar 

  • Dekaprelevic LL (1954) Species varieties and types of Georgian wheat (in Russian). Trudy Instituta Polevodstva Akademii Nauk Grusinskoi SSR 8: 3–61

    Google Scholar 

  • Dekaprelevic LL, Menabde VL (1929) Regarding the investigation of crop plants in western Georgia (in Russian with English summary). Nauchno-prikladnikh Otdelov Tiflisskovo Botanicheskovo Sada 6: 219–254

    Google Scholar 

  • Dekaprelevic LL, Menabde VL (1932) The hulled wheats of western Georgia (in Russian with English summary). Trudy po Prikladnoi Botanike, Genetike i Selektsii, Series 5, 1: 1–46

    Google Scholar 

  • Dorofeyev VF (1969) Die Weizen Transkaukasiens und ihre Bedeutung in der Evolution der GattungTriticum L. I. Die Formenmannigfaltigkeit der Weizen Transkaukasiens. Z Pflanzenzücht 61: 1–28

    Google Scholar 

  • Efstratiou N, Fumanal MP, Ferrer C, Urem-Kotsos D, Curci A, Tagliacozzo A, Stratouli G, Valamoti SM, Ntinou M, Badal E, Mandella M, Skourtopoulou K (1998) Excavations at the Neolithic settlement of Makri. Thrace, Greece (1988–1996)-a preliminary report. Saguntum 31: 11–62.

    Google Scholar 

  • Feldman M (1966) Identification of unpaired chromosomes in F1 hybrids involvingTriticum aestivum andT. timopheevi. Canadian J Genet Cytol 8: 144–151

    Google Scholar 

  • Feldman M (1976) Wheats. In: Simmonds NW (ed) Evolution of crop plants. Longmans, London, pp 120–128

    Google Scholar 

  • Gerlach WL, Appels R, Dennis ES, Peacock WJ (1978) Evolution and analysis of wheat genomes using highly repeated DNA sequences. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium. New Delhi, pp 81–91

  • Gill BS, Chen PD (1987) Role of cytoplasm-specific introgression in the evolution of polyploid wheats. Proceedings. National Academy of Sciences (USA) 84: 6800–6804

    Google Scholar 

  • Hansen JM (1991) The palaeoethnobotany of Franchthi Cave (Excavations at Franchthi Cave, fascicle 7). Indiana University Press, Bloomington

    Google Scholar 

  • Harlan JR, Zohary D (1966) Distribution of wild wheats and barley. Science 153: 1074–1080

    Google Scholar 

  • Hillman GC (1981) Reconstructing crop husbandry practices from charred remains of crops. In: Mercer R (ed) Farming practice in British prehistory. Edinburgh University Press, Edinburgh, pp 123–162

    Google Scholar 

  • Hillman GC, Mason S, Moulins D de, Nesbitt M (1996) Identification of archaeological remains of wheat: the 1992 London workshop. Circaea 12: 195–209

    Google Scholar 

  • Hutchinson J, Miller TE, Jahier J, Shepherd KW (1982) Comparison of the chromosomes ofT. timopheevi with related wheats using the techniques of C-banding andin situ hybridisation. Theoret Appl Genet 64: 31–40

    Google Scholar 

  • Jaaska V (1974) The origin of the tetraploid wheats on the basis of electrophoretic studies of enzymes (in Russian with English summary). Eesti NSV Teaduste Akadeemia 23, Bioloogia 3: 201–220

    Google Scholar 

  • Jaaska V (1978) NADP-dependent aromatic alcohol dehydrogenase in polyploid wheats and their diploid relatives. On the origin and phlyogeny of polyploid wheat. Theoret Appl Genet 53: 209–217

    Google Scholar 

  • Jacomet S (1987) Prähistorische Getreidefunde. Eine Anleitung zur Bestimmung prähistorischer Gersten- und Weizenfunde. Botanisches Institut, Universität Basel, Basel

    Google Scholar 

  • Jakubziner MM (1958) New wheat species. In: Jenkins BC (ed) Proceedings of the 1st international wheat genetics symposium. Winnipeg, 207–217

  • Jiang J, Gill BS (1994) Different species-specific chromosome translocations inTriticum timopheevi andT. turgidum support the diphyletic origin of polyploid wheats. Chromosome Research 2: 59–64

    Google Scholar 

  • Johnson BL (1967) Tetraploid wheats: seed electrophoretic patterns of the emmer and timopheevi groups. Science 158: 131–132

    Google Scholar 

  • Johnson BL (1975) Identification of the apparent B-genome donor of wheat. Canadian J Genet Cytol 17: 21–39

    Google Scholar 

  • Johnson BL, Barnhart D, Hall O (1967) Analysis of genome and species relationships in the polyploid wheats by protein electrophoresis. American J Bot 54: 1089–1098

    Google Scholar 

  • Jones G (1987) Agricultural practice in Greek prehistory. Ann Brit Sch Athens 82: 115–123

    Google Scholar 

  • Jones G (1998) Wheat grain identification-why bother? Environ Archaeol 2: 29–34

    Google Scholar 

  • Jones G, Halstead P (1995) Maslins, mixtures and monocrops: on the interpretation of archaeobotanical crop samples of heterogeneous composition. J Archaeol Sci 22: 103–114

    Google Scholar 

  • Jones G, Wardle K, Halstead P, Wardle D (1986) Crop storage at Assiros. Scientific American 254, (3): 96–103

    Google Scholar 

  • Kawahara T, Tanaka M (1977) Six chromosome types inTriticum araraticum Jakubz. differing with reciprocal translocations. Japanese J Genet 52: 267–271

    Google Scholar 

  • Kawahara T, Tanaka M (1981) Intraspecific differentiation in chromosome structure in the wild tetraploid wheats (abstract). Wheat Information Service 52: 33

    Google Scholar 

  • Kawahara T, Tanaka M (1983) Chromosome interchanges and the evolution of the B and G genomes. In: Sakomoto S (ed) Proceedings of the 6th international wheat genetics symposium. Kyoto, 977–981

  • Kihara H (1963) Nucleus and chromosome substitution in wheat and Aegilops. II Chromosome substitution. Seiken Ziho 15: 13–23

    Google Scholar 

  • Kimber G, Hulse MM (1979) The analysis of chromosome pairing in hybrids and the evolution of wheat. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium. New Delhi, pp 73–80

  • Knörzer K-H (1974) Bandkeramische Pflanzenfunde von Bedburg-Garsdorf, Kreis Bergheim/Erft. Rheinische Ausgr 15: 173–192

    Google Scholar 

  • Knörzer K-H (1980) Pflanzliche Großreste des bandkeramisches Siedlungsplatzes Wanlo (Stadt Mönchengladbach). Archaeo-Physika 7: 7–20

    Google Scholar 

  • Kostoff D (1936) The genomes ofTriticum timopheevi Zhuk.,Secale cereale L. andHaynaldia villosa Schur. Zeitschrift für Induktive Abstammungs- und Vererbungslehre 72: 115–118

    Google Scholar 

  • Kostoff D (1937) Chromosome behaviour inTriticum hybrids and allied genera I. interspecific hybrids withTriticum timopheevi. Proceedings. National Academy of Sciences (India) 5: 23–36

    Google Scholar 

  • Kushnir U, Halloran GM (1983a) Evidence on the saltatory origin of the G genome in wheat: the description of aTriticum timopheevi-like mutant. Ann bot 51: 561–569

    Google Scholar 

  • Kushnir U, Halloran GM (1983b) Evidence on the origin of the G genome in wheat: cytology and fertility of aT. timopheevi-like mutant. Canadian J Genet Cytol 25: 651–661

    Google Scholar 

  • Lilienfeld F, Kihara H (1934) Genomeanalyse beiTriticum undAegilops. V.Triticum timopheevi Zhuk. Cytologia 6: 87–122

    Google Scholar 

  • Love RM (1941) Chromosome behaviour in F1 wheat hybrids. I. pentaploids. Canadian J Res 19: 351–369

    Google Scholar 

  • Mann SS (1973) Cytoplasmic and cytogenetic relationships among tetraploidTriticum species. Euphytica 22: 287–300

    Google Scholar 

  • Mann SS, Lucken KA (1971) Nucleo-cytoplasmic interactions involving Aegilops cytoplasm and Triticum genomes. J Heredity 62: 149–152

    Google Scholar 

  • Menabde VL (1948) The Georgian wheats (in Russian). Izdatelstvo Akademii Nauk Grusinskoi SSR. Tblisi

    Google Scholar 

  • Menabde VL, Ertizian AA (1960) Investigation of the Georgian Sanduri wheats (in Russian). Soobshcheniya Akademii Nauk Grusinskoi SSR 26 (6): 731–736

    Google Scholar 

  • Miller TE (1987) Systematics and evolution. In: Lupton FGH (ed) Weeat breeding: its scientific basis. Chapman and Hall, London, pp 1–30

    Google Scholar 

  • Miller TE (1992) A cautionary note on the use of morphological characters for recognising taxa in wheat (genusTriticum). In: Anderson PC (ed) Préhistoire de l'agriculture: nouvelles approches expérimentales et ethnographiques (Monographie du CRA 6). CNRS, Paris, pp 249–253

    Google Scholar 

  • Mori N, Liu Y-G, Tsunewaki K (1995) Wheat phylogeny determined by RFLP analysis of nuclear DNA. 2. Wild tetraploid wheats. Theoret Appl Genet 90: 129–134

    Google Scholar 

  • Moulins D de (1993) Les restes de plantes carbonisées de Cafer Höyük. Cahiers de l'Euphrate 7: 191–234

    Google Scholar 

  • Mukai Y, Mann SS, Panayotov I, Tsunewaki K (1979) Comparative studies of the nucleus-cytoplasm hybrids of wheat produced by three research groups. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium. New delhi, pp 282–292

  • Nakai Y (1979) The origin of the tetraploid wheats revealed from the study on esterase isozymes. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium. New Delhi, pp 108–119

  • Nesbitt M, Samuel D (1996) From staple crop to extinction? The archaeology and history of the hulled wheats. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats. International Plant Genetics Resources Institute, Rome, pp 41–100

    Google Scholar 

  • Nevski SA 91934) TribeHordeeae Benth. (in Russian with translation by V Turin 1940) In: Komarov VL, Flora USSR (volume 2). Leningrad, pp 590–728

  • Nishikawa K, Furata Y (1978) DNA content of nucleus and individual chromosomes and its evolutionary significance. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium. New Delhi, pp 73–80

  • Nishikawa K, Furuta Y, Kudo S, Ujihara K (1979) The differentiation of tetraploid wheat in relation to DNA content of nucleus and alpha-amylase isozymes. In: Tanaka M (ed) A preliminary report of studies on the differentiation of tetraploid wheats from different biological levels (Report of the Germ-plasm Institute 4). Faculty of Agriculture, Kyoto University, Kyoto, pp 30–38

    Google Scholar 

  • Nishikawa K, Nobuhara M (1971) Genetic studies of a-amylase isozymes in wheat I. location of genes and variation in tetra- and hexaploid wheat. Japanese J Genet 46: 345–353

    Google Scholar 

  • Nishikawa K, Sawai Y (1969) Relative amount of nuclear DNA in tetraploid wheats. Wheat Information Service 29: 2–3

    Google Scholar 

  • Noda K, Koulin G (1989) Chromosome structural changes and their role in the evolution of tetraploid wheats. Genome 32: 257–261

    Google Scholar 

  • Ogihara Y, Tsunewaki K (1982) Molecular basis of the genetic diversity of the cytoplasm inTriticum andAegilops. I. Diversity of the chloroplast genome and its lineage revealed by the restriction pattern of ct-DNAs. Japanese J Genet 57: 371–396

    Google Scholar 

  • Ogihara Y, Tsunewaki K (1988) Diversity and evolution of chloroplast DNA inTriticum andAegilops as revealed by restrictive fragment analysis. Theoret Appl Genet 76: 321–332

    Google Scholar 

  • Pappa M, Besios M (1999) The Makriyalos project. Rescue excavations at the Neolithic site of Makriyalos, Pieria, Northern Greece. In: Halstead P (ed) Neolithic society in Greece. Sheffield University Press, pp 108–120

  • Poyarkova H (1988) Morphology, geography and infraspecific taxonomics ofTriticum dicoccoides Körn. A retrospective of 80 years of research. Euphytica 38: 11–23

    Google Scholar 

  • Rees H, Walters MR (1965) Nuclear DNA and the evolution of wheat. Heredity 20: 73–82

    Google Scholar 

  • Riley R, Unrau J, Chapman U (1958) Evidence on the origin of the B genome of wheat. J Heredity 49: 91–98

    Google Scholar 

  • Sachs L (1953) Chromosome behaviour in species hybrids withTriticum timopheevi. Heredity 7: 49–58.

    Google Scholar 

  • Saito H, Ishida N (1979) Speciation of wild tetraploid wheats concerning susceptibility to leaf rust. In: Tanaka M (ed) A preliminary report of studies on the differentiation of tetraploid wheats from different biological levels (Report of the Germplasm Institute 4). Faculty of Agriculture, Kyoto University, Kyoto, pp 18–22

    Google Scholar 

  • Sears ER (1948) The cytology and genetics of the wheats and their relatives. Advances in Genetics 2: 239–270

    Google Scholar 

  • Sears ER (1956) The systematics cytology and genetics of wheat. In: Kappert H, Rudorf W (eds) Handbuch der Pflanzenzüchtung (2nd edition, volume 2). Parey, Berlin, pp. 164–187

    Google Scholar 

  • Shands H, Kimber G (1973) Reallocation of the genomes ofTriticum timopheevi Zhuk. In: Sears ER, Sears LMS (eds) Proceedings of the 4th international wheat genetics symposium. Missouri, pp 101–108

  • Stoletova E (1924) Polva-Emmer.Triticum dicoccum Schrank. (in Russian with English summary). Trudy po Prikladnoi Botanike i Selektsii 14, (1): 27–111

    Google Scholar 

  • Suemoto H (1968) The origin of the cytoplasm of tetraploid wheats. In: Proceedings of the 3rd international wheat genetics symposium. Canberra, 141–152

  • Suemoto H (1973) The origin of the cytoplasm of tetraploid wheats. In: Sears ER, Sears LMS (eds) Proceedings of the 4th international wheat genetics symposium. Missouri, p 59

  • Suemoto H (1979a) The origin of the cytoplasm of tetraploid wheat — III. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium. New Delhi, pp 73–80

  • Suemoto H (1979b) The cytoplasm of tetraploid wheats. In: Tanaka M (ed) A preliminary report of studies on the differentiation of tetraploid wheats from different biological levels (Report of the Germ-plasm Institute 4). Faculty of Agriculture, Kyoto University, Kyoto, 23–29

    Google Scholar 

  • Svetozarova VV (1939) Second genome ofTriticum timopheevi Zhuk. Comptes Rendus (Doklady) de l'Academie des Sciences de l'URSS 23: 473–477

    Google Scholar 

  • Tanaka M, Ichikawa S (1968) Cytogenetical examinations ofTriticum araraticum Jakubz., a wild type tetraploid species (abstract). Genetics 60: 229

    Google Scholar 

  • Tanaka M, Ichikawa S (1972) Cytogenetical relationships of two types ofTriticum araraticum Jakubz. to other tetraploid wheat species. Japanese Journal of Genetics 47: 103–114

    Google Scholar 

  • Tanaka M, Ishii H (1973) Cytogenetical evidence on the speciation of wild tetraploid wheats collected in Iraq, Turkey, and Iran. In: Sears ER, Sears LMS (eds) Proceedings of the 4th international wheat genetics symposium. Missouri, pp 115–121

  • Tanaka M, Ishii H (1975) Hybrid sterility and chromosomal interchanges found in thetimopheevi group of tetraploid wheat. Japanese J Genet 50: 141–149

    Google Scholar 

  • Tanaka M, Kawahara T, Sano J (1978a) The evolution of wild tetraploid wheats. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium. New Delhi, pp 73–80

  • Tanaka M, Kawahara T, Sano J (1978b) The origin and the evolution of the wild tetraploid wheats. Wheat Information Service 47–48: 7–11

    Google Scholar 

  • Tanaka M, Kawahara T, Sano J (1979) The origin and differentiation of the B and G genomes of tetraploid wheats. In: Tanaka M (ed) A preliminary report of studies on the differentiation of tetraploid wheats from different biological levels (Report of the Germplasm Institute 4). Faculty of Agriculture, Kyoto University, Kyoto, pp 1–11

    Google Scholar 

  • Tanaka M, Sakamoto S (1979) Morphological and physiological variations in wild tetraploid wheats collected from the Zagros mountains. In: Tanaka M (ed) A preliminary report of studies on the differentiation of tetraploid wheats from different biological levels (Report of the Germ-plasm Institute 4). Faculty of Agriculture, Kyoto University, Kyoto, 12–17

    Google Scholar 

  • Tavrin EW (1964) On the origin ofT. zhukovskyi Men. and Er. (in Russian with English summary). Trudy po Prikladnoi Botanike, Genetike i Selektsii 36: 89–96

    Google Scholar 

  • Tsvelev NN (1983) Grasses of the Soviet Union. Amerind Publishing Co., New Delhi

    Google Scholar 

  • Tsunewaki K (1989) Plasmon diversity inTriticum andAegilops, and its implication in wheat evolution. Genome 31: 143–154

    Google Scholar 

  • Tsunewaki K, Mukai Y, Ryu Endo T (1979) On the descent of the cytoplasms of polyploid species inTriticum andAegilops. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium. New Delhi, pp 73–80

  • Tsunewaki K, Nakai Y (1973) Considerations on the origin and speciation of four groups of wheat from the distribution of necrosis and chlorosis genes. In: Sears ER, Sears LMS (eds) Proceedings of the 4th international wheat genetics symposium. Missouri, 123–129

  • Tsunewaki K, Ogihara Y (1983) The molecular basis of genetic diversity among cytoplasms ofTriticum andAegilops species. II. On the origin of polyploid wheat cytoplasms as suggested by chloroplast DNA restriction fragment patterns. Genetics 104: 155–171

    Google Scholar 

  • Upadaya MD, Swaminathan MS (1963) Genome analysis inTriticum zhukovskyi, a new hexaploid wheat. Chromosoma 4: 589–600

    Google Scholar 

  • Vargas A, Touloumis K, Anagnostou I, Valamoti S, Christidou, R (1995) Anaskafes stin proistoriki toumba tou Arkadikou Dramas [Excavations at the prehistoric dwelling mound of Arkadikos, Drama, in Greek]. In: To archaeologiko ergo sti Makedonia kai Thraki (AEMTH 6). Thessaloniki, pp 577–585

  • Wagenaar EB (1961) Studies on the genome constitution ofTriticum timopheevi Zhuk. I. Evidence for genetic control of meiotic irregularities in tetraploid hybrids. Canadian J Genet Cytol 3: 47–60

    Google Scholar 

  • Wagenaar EB (1963) Cytogenetic relationships betweenTriticum timopheevi andT. araraticum. In: Proceedings of the 2nd international wheat genetics symposium. pp 235–236

  • Wagenaar EB (1966) Studies of the genome constitution ofTriticum timopheevi Zhuk. II. The timopheevi complex and its origin. Evolution 20: 150–164

    Google Scholar 

  • Wagenaar EB (1970) Studies on the genome constitution ofTriticum timopheevi Zhuk. III. Canadian J Genet Cytol 12: 347–355

    Google Scholar 

  • Wardle KA (1989) Excavations at Assiros Toumba 1988, a preliminary report. Ann Brit Sch Athens 84: 447–463

    Google Scholar 

  • Wasylikowa K, Cârciumaru M, Hajnalová E, Hartyányi BP, Pashkevich GA, Yanushevich ZV (1991) East-central Europe. In: Zeist W van, Wasylikowa K, Behre KE (eds) Progress in old world palaeoethnobotany. Balkema, Rotterdam, pp 207–239

    Google Scholar 

  • Zhukovsky PM (1923)Triticum dicoccum Schrankdicoccoides Körn in Georgia (in Russian with English summary). Nauchnoprikladnikh Otdelov Tiflisskovo Botanicheskovo Sada 3: 1–3

    Google Scholar 

  • Zhukovsky PM (1928) A new species of wheat (in Russian with English summary). Trudy po Prikladnoi Botanike, Genetike i Selektsii 19, (2): 59–66

    Google Scholar 

  • Zohary D (1969) The progenitors of wheat and barley in relation to domestication and agricultural dispersal in the Old World. In: Ucko PJ, Dimbleby GW (eds) The domestication and exploitation of plants and animals. Duckworth, London, pp 46–66

    Google Scholar 

  • Zohary D (1983) Wild genetic resources of Israel. Israel Journal of Botany 32: 98–99

    Google Scholar 

  • Zohary D (1989) Domestication of the southwest Asian Neolithic crop assemblage of cereals, pulses, and flax: the evidence from the living plants. In: Harris DR, Hillman GC (eds) Foraging and farming: the evolution of plant exploitation. Unwin Hyman, London, pp 358–373

    Google Scholar 

  • Zohary D (1996) The mode of domestication of the founder crops of southwest Asian agriculture. In: Harris D (ed) The origins and spread of agriculture and pastoralism in Eurasia. University College, London, pp 142–158

    Google Scholar 

  • Zohary D, Feldman M (1962) Hybridization between amphidiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution 16: 44–61

    Google Scholar 

  • Zohary D, Hopf M (1993) Domestication of plants in the Old World (2nd edition). Clarendon Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glynis Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, G., Valamoti, S. & Charles, M. Early crop diversity: A “new” glume wheat from northern Greece. Veget Hist Archaebot 9, 133–146 (2000). https://doi.org/10.1007/BF01299798

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01299798

Key words

Navigation