Skip to main content
Log in

Feuilletages en surfaces, cycles évanouissants et variétés de Poisson

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Surface foliations, vanishing cycles and Poisson manifolds. Afoliated cylinder of a foliated manifold (M,F) is a path of integral loopsc t forF. Such a cylinder defines anon-trivial vanishing cycle c 0 ifc t is null-homotopic in its supportF t for eacht>0, butc 0 is not null-homotopic in its supportF 0. Vanishing cycles were introduced by S. P. Novikov to study qualitative aspects of codimension one foliations. In this paper we apply this notion to the study of higher codimensional foliations.

The first aim is to show the influence that the triviality of vanishing cycles exerts on the topology of thehomotopy groupoid ofF. It is natural to try to reduce the study of triviality to more regular vanishing cycles, as well as to obtain a nice criterion of triviality. In this way, we introduce the notion ofregular vanishing cycle as the “orthogonal” version (for a riemannian metric onM) of the classical notion of immersed vanishing cycle and the notion ofcoherent vanishing cycle, i.e. an integral discD 1 with boundaryc 1 extends to a global foliated homotopyD t such thatc t is the boundary ofD t for eacht>0. We also prove that the triviality of these vanishing cycles implies the triviality of all vanishing cycles. For compact foliated manifolds, we obtain the following criterion: a regular coherent vanishing cycle is non-trivial if and only if the area of the discsD t converges to infinity.

Finally, we give two applications of these results to surface foliations: we generalize the Reeb stability theorem to higher codimensions and we resolve the problem of the symplectic realization of Poisson structures supported by surface foliations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alcalde Cuesta F (1994) Préquantification de certains variétés de Poisson régulières. In: Geometric Study of Foliations. pp 123–145. Singapore: World Scientific

    Google Scholar 

  2. Alcalde Cuesta F, Hector G (1995) Intégration symplectique des variétés de Poisson régulières. Israel J Math90: 125–165

    Google Scholar 

  3. Candel A (1993) Uniformization of surface laminations. Ann Scient Ec Norm Sup26: 489–516

    Google Scholar 

  4. Connes A (1979) Sur la théorie non commutative de l'intégration. In: Algèbres d'Opérateurs. Lect Notes Math725: 9–143

  5. Coste A, Dazord P, Weinstein A (1987) Groupoïdes symplectiques. Publ Dépt Math Lyon2/A, 1–62

    Google Scholar 

  6. Dazord P (1990) Groupoïdes symplectiques et Troisième Théorème de Lie. Lect Notes Math1416: 39–74

    Google Scholar 

  7. Dazord P, Hector G (1991) Intégration symplectique des variétés de Poisson totalement asphériques, Séminaire Sud-Rhodanien de Géométrie à Berkeley. Springer Math Sc Res Inst Publ20: 37–72

    Google Scholar 

  8. Hector G (1992) Une nouvelle obstruction à l'intégrabilité des variétés de Poisson régulières. Hokkaido Math J21: 159–185

    Google Scholar 

  9. Hector G (Travial non publié)

  10. Hector G (1994) Groupoïdes, Feuilletages et C*-algèbres. In: Geometric Study of Foliations pp 3–34. Singapore: World Scientific

    Google Scholar 

  11. Hector G, Hirsch U (1981) Introduction to the Geometry of Foliations, Part A. Braunschweig: Vieweg

    Google Scholar 

  12. Hector G, Macias E, Saralegi M (1989) Lemme de Moser feuilleté et classification des variétes de Poisson régulières. Publ Mat33: 423–430

    Google Scholar 

  13. Higgins PJ, Mackenzie KCH (1990) Fibrations and quotients of differentiable groupoids. J London Math Soc42: 101–110

    Google Scholar 

  14. Karasev MV (1987) Analogues of the objects of Lie group theory for non-linear Poisson brackets. Math USSR Izvestiya28: 497–527

    Google Scholar 

  15. Lichnérowicz A (1997) Les variétés de Poisson et leurs algèbres de Lie associées. J Diff Geometry12: 253–300

    Google Scholar 

  16. Mackenzie K (1987) Lie groupoids and Lie algebroids in Differential Geometry. London Math Soc Lect Notes Series 124, Cambridge: Univ Press

    Google Scholar 

  17. Moussu R, Pelletier F (1974) Sur le théorème de Poincaré-Bendixson. Ann Inst Fourier24: 131–148

    Google Scholar 

  18. Novikov SP (1965) Topology of foliations. Trans Moscow Math Soc14: 269–304

    Google Scholar 

  19. Plante JF (1975) Foliations with measure preserving holonomy. Ann Math102: 327–361

    Google Scholar 

  20. Phillips J (1987) The holonomic imperative and the homotopy groupoid of a foliated manifold. Rocky Mountains J Math17: 151–165

    Google Scholar 

  21. Pradines J (1966) Théorie de Lie pour les groupoïdes différentiables. Relations entre propriétés locales et globales. CR Acad Sci Paris263: 907–910

    Google Scholar 

  22. Reeb G (1952) Sur certaines propriétés topologiques des variétés feuilletées Paris: Hermann

    Google Scholar 

  23. Ruelle D, Sullivan D (1975) Currents, Flows and Diffeomorphisms. Topology14: 319–327

    Google Scholar 

  24. Sullivan D (1976) Cycles for the Dynamical Study of Foliated Manifolds and Complex Manifolds. Invent Math36: 225–255

    Google Scholar 

  25. Weinstein A (1983) The local structure of Poisson manifolds. J Diff Geometry18: 523–557

    Google Scholar 

  26. Weinstein A (1988) Symplectic groupoids and Poisson manifolds. Bull Amer Math Soc16: 101–103

    Google Scholar 

  27. Weinstein A (1988) Coisotropic calculus and Poisson groupoids. J Math Soc Japan40: 705–727

    Google Scholar 

  28. Weinstein A (1989) Blowing-up realizations of Heisenberg-Poisson manifolds. Bull Sc Math113: 381–406

    Google Scholar 

  29. Weinstein A, Xu P (1991) Extensions of symplectic groupoids and quantization. J reine angew Math417: 159–189

    Google Scholar 

  30. Winkelnkemper H E (1983) The graph of a foliation. Ann Glob Analysis Geometry1: 51–75

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuesta, F.A., Hector, G. Feuilletages en surfaces, cycles évanouissants et variétés de Poisson. Monatshefte für Mathematik 124, 191–213 (1997). https://doi.org/10.1007/BF01298244

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01298244

1991 Mathematics Subject Classification

Key words

Navigation