Skip to main content
Log in

On the effects of microstress on macroscopic diffusion processes

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The effects of internal microstress fields are neglected in a usual simulation of the diffusion of a small solute trough solid heterogeneous media. However, when a heterogeneous material is used in a structure undergoing external mechanical loading, highly nonuniform stress fields can arise locally due to the variable microstructure. In this paper a simple quasi-Fickian model is studied which employs a spatially variable stress-dependent diffusivity,D σ. The structure ofD σ stems from an assumption that the stresses nonuniformly open and close the pores of the material microstructure, thus providing preferential sites for accumulation of the diffusing solute. When σ=0, the usual stress-free Fickian diffusivity,D 0, is recovered. Because of the highly oscillatory stress fields on the micro level, when employing numerical methods, such as the finite element or finite difference method, the distance between discretization nodes must be far smaller than the microstructural oscillations to obtain accurate simulations. This fact makes direct numerical simulations involvingD σ virtually impossible without computationally intensive, and complicated, special techniques. In this paper upper bounds are developed for the difference between solutions produced when usingD σ and alternativelyD 0 in the body under analysis. The general case, whenD 0, σ and consequentlyD σ, are spatially variable, is considered. The bounds are a function of onlyD 0 and σand do not require any knowledge of the stress-dependent solution, and can thus be used as an a-priori check to determine whether potentially expensive computations are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerberich, W. W., Livne, T., Chen, X. F., Kaczorowski, M.: Crack growth from hydrogen-temperature and microstructural effects in 4340 steel. Metall. Trans.19A, 1319–1334 (1988).

    Google Scholar 

  2. Gerberich, W. W., Foecke, T. J.: Hydrogen enhanced decohesion in Fe−Si single crystal. In: Implications to modeling thresholds in hydrogen effects on material behavior (Moody, N. R., Thompson, A. W., eds.), pp. 687–702. The Minerals, Metals and Materials Society 1990.

  3. Van der Burg, M. W. D., Van der Giessen, E., Brouwer, R. C.: Investigation of hydrogen attack in 2.25Cr-1Mo steels with a high-triaxiality void growth model. Acta Metall.44, 505–518 (1996).

    Google Scholar 

  4. Metals Handbook (Leiter, R. et al. eds.). Failure analysis and prevention, vol. 2, 8th ed., Ohio: The American Society for Metals 1975.

    Google Scholar 

  5. Maxwell, J. C.: On the dynamical theory of gases. Philo. Trans. Soc. London157, 49 (1867).

    Google Scholar 

  6. Joseph, D. D., Preziosi, L.: Heat waves. Rev. Mod. Phys.61, (1) 41–73 (1989).

    Google Scholar 

  7. Jou, D., Casas-Vazqzez, J., Lebon, G.: Extended irreversible thermodynamics. Rep. Prog. Phys.51, 1105–1179 (1988).

    Google Scholar 

  8. Dreyer, W., Struchtrup, H.: Heat pulse experiments revisited. Cont. Mech. Thermodyn.5, 3–50 (1993).

    Google Scholar 

  9. Chandrasekhariah, D. S.: Thermoelasticity with second sound: a review. Appl. Mech. Rev.39, 355–376 (1986).

    Google Scholar 

  10. Muller, I., Ruggeri, T.: Extended thermodynamics, New York: Springer 1993.

    Google Scholar 

  11. Crank, J.: The mathematics of diffusion, 2nd ed., Oxford: Oxford Science Publications 1975.

    Google Scholar 

  12. Aifantis, D. C.: New interpretation of diffusion in regions with high diffusivity paths: A continuum approach. Acta Metall.27, 683–691 (1979).

    Google Scholar 

  13. Doig, P., Jones, T. A.: Model for the initiation of hydrogen embrittlement cracking at notches in gaseous hydrogen environments. Metall. Trans.18A, 1993–1998 (1977).

    Google Scholar 

  14. Unger, D. J., Aifantis, D. C.: On the theory of stress-assisted diffusion, part II. Acta Mech.47, 117–151 (1983).

    Google Scholar 

  15. Unger, D. J., Gerberich, W. W., Aifantis, D. C.: Further remarks on the implications of steady-state stress-assisted diffusion on environmental cracking. Scripta Metall.16, 1059–1064 (1982).

    Google Scholar 

  16. Van Leeuwen, H. P.: A quantitative model of hydrogen induced grain boundary cracking. Corrosion29, 197–204 (1973).

    Google Scholar 

  17. Hashin, Z.: Analysis of composite materials: a survey. J. Appl. Mech.50, 481–505 (1983).

    Google Scholar 

  18. Aifantis, E. C.: Some remarks concerning the solid-state diffusivity tensor. In: Proceedings of the Sixth Canadian Congress of Applied Mechanics, pp. 957–958. Vancouver: University of British Columbia Press 1977.

    Google Scholar 

  19. Flynn, C. P.: Point defects and diffusion. Oxford: Clarendon Press 1972.

    Google Scholar 

  20. Voigt, W.: Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper. Wied. Ann.38, 573–587 (1889).

    Google Scholar 

  21. Reuss, A.: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM9, 49–58 (1929).

    Google Scholar 

  22. Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. LondonA65, 349–354 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Peter Haupt on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zohdi, T.I., Wriggers, P. On the effects of microstress on macroscopic diffusion processes. Acta Mechanica 136, 91–107 (1999). https://doi.org/10.1007/BF01292300

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01292300

Keywords

Navigation