Skip to main content
Log in

Relative motion inAmoeba proteus in respect to the adhesion sites. I. Behavior of monotactic forms and the mechanism of fountain phenomenon

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The unbranched ectoplasmic cylinder of monotacticA. proteus is always retracted toward the cell-substrate attachment sites. The retraction velocity increases from the adhesion sites toward any free distal body end in a linear way, which indicates the uniform contractility of the whole cylinder. Therefore, in the cells frontally attached all the ectoplasm moves forward, and in those adhering by the tail the whole ectoplasmic tube moves backward producing the full fountain phenomenon. With cell attachment at the middle body regions, which is most typical for normal locomotion, the whole ectoplasm is centripetally retracted from both body poles toward the adhesion zone, producing then the tail retraction in the posterior and incomplete fountain in the anterior body part. In unattached amoebae the whole peripheral tube is retracted toward its geometrical centre which coincides with its posterior closed end, producing therefore also a full fountain. It is generalized that the fountain arises always between an unattached front and the nearest attachment point behind its manifestation zone. The photographic records of movement and longitudinal velocity profiles of ectoplasmic retraction are identical on both sides of the attachment points, suggesting the same mechanism for the fountain movement as for the tail withdrawal. It is concluded therefore that not the axial endoplasmic arm of the fountain is active, but its peripheral arm built of the ectoplasm.

All elements complicating the cell contour, as the constriction rings and ephemeral lateral pseudopodia, do not change their position in respect to the ectoplasmic material, but move together with it in respect to the substrate, i.e., the cytoskeleton moves as a whole. Loose glass rods attached by adhesion to cell surface also precisely follow the cytoskeleton movements, being transported toward the main locomotory adhesion zone established on the firm substrate, although the cell membrane as such behaves differently. It suggests a direct connection between the adhesion sites and the cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R. D., 1961 a: Ameboid movement. In: The cell, Vol. 2 (Brachet, J., Mirsky, A. E., eds.), pp. 135–216. New York-London: Academic Press.

    Google Scholar 

  • —, 1961 b: A new theory of amoeboid movement and endoplasmic streaming. Exp. Cell Res. (Suppl.)8, 17–31.

    Google Scholar 

  • —, 1973: Biophysical aspects of pseudopodium formation and retraction. In: The biology of amoeba (Jeon, K. W., ed.), pp. 201–247. New York-London: Academic Press.

    Google Scholar 

  • —,Allen, N. S., 1978: Cytoplasmic streaming in amoeboid movement. Ann. Rev. Biophys. Bioeng.7, 469–495.

    Google Scholar 

  • —,Cooledge, J. W., Hall, P. J., 1960: Streaming in cytoplasm dissociated from the giant amoeba,Chaos chaos. Nature187, 896–899.

    PubMed  Google Scholar 

  • —,Taylor, D. L., 1975: The molecular basis of ameboid movement. In: Molecules and cell movement (Inoue, S., Stevens, R. E., eds.), pp. 239–258. New York: Raven Press.

    Google Scholar 

  • Condeelis, J. S., Taylor, D. L., 1977: The contractile basis of ameboid movement. V. The control of gelation, solation, and contraction in extracts fromDictyostelium discoideum. J. Cell Biol.74, 901–927.

    Google Scholar 

  • Czarska, L., Grębecki, A., 1966: Membrane folding and plasmamembrane ratio in the movement and shape transformation inAmoeba proteus. Acta Protozool.4, 201–239.

    Google Scholar 

  • De Bruyn, P. P. H., 1946: The amoeboid movement of the mammalian leukocytes in tissue cultures. Anat. Rec.95, 177–192.

    Google Scholar 

  • Gawlitta, W., Stockem, W., Wehland, J., Weber, K., 1980: Organization and spatial arrangement of fluorescein-labeled native actin microinjected into normal locomoting and experimentally influencedAmoeba proteus. Cell Tiss. Res.206, 181–191.

    Google Scholar 

  • Grębecka, L., 1978 a: Frontal cap formation and origin of monotactic forms ofAmoeba proteus under culture conditions. Acta Protozool.17, 191–202.

    Google Scholar 

  • —, 1978 b: Micrurgical experiments on the frontal cap of monotactic forms ofAmoeba proteus. Acta Protozool.17, 203–212.

    Google Scholar 

  • —, 1981: Motory effects of perforating peripheral cell layers ofAmoeba proteus. Protoplasma106, 343–349.

    Google Scholar 

  • —,Grębecki, A., 1975: Morphometric study of movingAmoeba proteus. Acta Protozool.14, 337–361.

    Google Scholar 

  • — —, 1981: Testing motor functions of the frontal zone in the locomotion ofAmoeba proteus. Cell Biol. Internat. Rep.5, 587–594.

    Google Scholar 

  • —,Hrebenda, B., 1979: Topography of cortical layer inAmoeba proteus as related to the dynamic morphology of moving cell. Acta Protozool.18, 493–502.

    Google Scholar 

  • Grębecki, A., 1976: Co-axial motion of the semi-rigid cell frame inAmoeba proteus. Acta Protozool.15, 221–248.

    Google Scholar 

  • —, 1977: Non-axial cell frame movements and the locomotion ofAmoeba proteus. Acta Protozool.16, 53–85.

    Google Scholar 

  • —, 1979: Organization of motory functions in amoebae and in slime moulds plasmodia. Acta Protozool.18, 43–58.

    Google Scholar 

  • —, 1981: Effects of localized photic stimulation on amoeboid movement and their theoretical implications. Eur. J. Cell Biol.24, 163–175.

    PubMed  Google Scholar 

  • —, 1982 a: Études expérimentales sur la localisation des fonctions motrices chez les amibes. Année Biol.21, 275–306.

    Google Scholar 

  • - 1982 b: Supramolecular aspects of amoeboid movement. In: Progress in protozoology. Proc. VI Internat. Congr. Protozool., part 1, pp. 117–130.

  • —,Grębecka, L., 1978: Morphodynamic types ofAmoeba proteus: a terminological proposal. Protistologica14, 349–358.

    Google Scholar 

  • — —,Kłopocka, W., 1981: Testing steering functions of the frontal zone in the locomotion ofAmoeba proteus. Cell Biol. Internat. Rep.5, 595–600.

    Google Scholar 

  • Haberey, M., Wohlfarth-Bottermann, K. E., Stockem, W., 1969: Pinocytose und Bewegung von Amöben. VI. Kinematographische Untersuchungen über das Bewegungsverhalten der Zelloberfläche vonAmoeba proteus. Cytobiologie1, 70–84.

    Google Scholar 

  • Hauser, M., 1978: Demonstration of membrane-associated and oriented microfilaments inAmoeba proteus by means of a Schiff base/glutaraldehyde fixative. Cytobiologie18, 95–106.

    PubMed  Google Scholar 

  • Hellewell, S. B., Taylor, D. L., 1979: The contractile basis of ameboid movement. VI. The solation-contraction coupling hypothesis. J. Cell Biol.83, 633–648.

    Google Scholar 

  • Holtfreter, J., 1948: Significance of the membrane in embryonic processes. Ann. N. Y. Acad. Sci.49, 709–760.

    Google Scholar 

  • Hrebenda, B., Grębecka, L., 1978: Ultrastructure of the frontal cap of monotactic forms ofAmoeba proteus. Cytobiologie17, 62–72.

    PubMed  Google Scholar 

  • Hyman, L. H., 1917: Metabolic gradients inAmoeba and their relation to the mechanism of amoeboid movement. J. exp. Zool.24, 55–99.

    Google Scholar 

  • Ishii, K.,Kanno, F., 1977: An analysis of movement in amoeba ectoplasm. Private print distributed at the V Internat. Congr. Protozool., New York.

  • Jahn, T. L., 1964: Relative motion inAmoeba proteus. In: Primitive motile systems in cell biology (Allen, R. D., Kamiya, N., eds.), pp. 279–302. New York-London: Academic Press.

    Google Scholar 

  • Kane, R. E., 1976: Actin polymerization and interaction with other proteins in temperature-induced gelation of sea urchin eggs. J. Cell Biol.71, 704–714.

    PubMed  Google Scholar 

  • Kanno, F., 1965: An analysis of amoeboid movement. IV. Cinematographic analysis of movement of granules with special reference to the theory of amoeboid movement. Annot. Zool. Jap.38, 45–63.

    Google Scholar 

  • —, 1969: Movement of plasmalemma in ameba. Symp. Soc. Chem.19, 57–63.

    Google Scholar 

  • Käppner, W., 1961: Bewegungsphysiologische Untersuchungen an der AmoebeChaos chaos L. I. Der Einfluß des pH des Mediums auf das bewegungsphysiologische Verhalten vonChaos chaos L. Protoplasma53, 81–105.

    Google Scholar 

  • Korohoda, W., 1970: Locomotion ofAmoeba proteus in conditions immitating its natural environment. Folia Biol.18, 145–152.

    Google Scholar 

  • —,Stockem, W., 1975: On the nature of hyaline zones in the cytoplasm ofAmoeba proteus. Microsc. Acta77, 129–141.

    PubMed  Google Scholar 

  • — —, 1976: Two types of hyaline caps, constricting rings and the significance of contact for the locomotion ofAmoeba proteus. Acta Protozool.15, 179–185.

    Google Scholar 

  • Kuroda, K., 1979 a: Movement of demembranated slime mould cytoplasm. Cell Biol. Internat. Rep.3, 135–140.

    Google Scholar 

  • —, 1979 b: Movement of cytoplasm in a membrane-free system. In: Cell motility: molecules and organization (Hatano, S., Ishikawa, H., Sato, H., eds.), pp. 347–361. Tokyo: University of Tokyo Press.

    Google Scholar 

  • Lewis, W. H., 1939: The role of a superficial plasmagel layer in changes of form, locomotion and division of cells in tissue cultures. Arch. exp. Zellforsch.23, 1–7.

    Google Scholar 

  • Mast, S. O., 1926: Structure, movement, locomotion and stimulation inAmoeba. J. Morphol.41, 347–425.

    Google Scholar 

  • Nowakowska, G., 1978: Twisting of suspended monotactic specimens ofAmoeba proteus. Acta Protozool.17, 347–352.

    Google Scholar 

  • Pantin, C. F. A., 1923: On the physiology of amoeboid movement. J. Marine Biol. Assoc.13, 24–69.

    Google Scholar 

  • Rinaldi, R. A., 1963: Velocity profile pictographs of amoeboid movement. Cytologia28, 417–424.

    Google Scholar 

  • —, 1964: Pictographs and flow analysis of the hyaline cap inChaos chaos. Protoplasma58, 603–620.

    Google Scholar 

  • —,Hrebenda, B., 1975: Oriented thick and thin filaments inAmoeba proteus. J. Cell Biol.66, 193–198.

    PubMed  Google Scholar 

  • —,Jahn, T. L., 1963: On the mechanism of ameboid movement. J. Protozool.10, 344–357.

    PubMed  Google Scholar 

  • Schulze, F. E., 1875: Rhizopodenstudien. Arch. Mikr. Anat.11, 329–353.

    Google Scholar 

  • Seravin, L. N., 1966 a: Monopodial forms ofAmoeba proteus (in Russian). Dokl. Akad. Nauk SSSR166, 1472–1475.

    Google Scholar 

  • Seravin, L. N., 1966 b: Ameboid locomotion. I. Arrest and resumption of the ameboid locomotion under some experimental conditions (in Russian with English summary). Zool. Zhurn.45, 334–341.

    Google Scholar 

  • Stockem, W., Hoffmann, H. U., Gawlitta, W., 1982: Spatial organization and fine structure of the cortical filament layer in normal locomotingAmoeba proteus. Cell Tiss. Res.221, 505–519.

    Google Scholar 

  • — —,Gruber, B., 1983 a: Dynamics of the cytoskeleton inAmoeba proteus. I. Redistribution of microinjected fluorescein labeled actin during locomotion, immobilization and phagocytosis. Cell Tiss. Res.232, 79–96.

    Google Scholar 

  • —,Naib-Majani, W., Wohlfarth-Bottermann, K. E., Osborn, M., Weber, K., 1983 b: Pinocytosis and locomotion of amoebae. XIX. Immunocytochemical demonstration of actin and myosin inAmoeba proteus. Eur. J. Cell Biol.29, 171–178.

    PubMed  Google Scholar 

  • —,Weber, K., Wehland, J., 1978: The influence of microinjected phalloidin on locomotion, protoplasmic streaming and cytoplasmic organization inAmoeba proteus andPhysarum polycephalum Cytobiologie18, 114–131.

    PubMed  Google Scholar 

  • —,Wohlfahrt-Bottermann, K. E., Haberey, M., 1969: Pinocytose und Bewegung von Amöben. V. Konturveränderungen und Faltungsgrad der Zelloberfläche vonAmoeba proteus. Cytobiologie1, 37–57.

    Google Scholar 

  • Stossel, T., Hartwig, J., 1976: Interactions of actin, myosin and a new actin-binding protein of rabbit pulmonary macrophages. II. Role in cytoplasmic movement and phagocytosis. J. Cell Biol.68, 602–619.

    PubMed  Google Scholar 

  • Taylor, D. L., 1976: Motile model systems of ameboid movement. In: Cell motility (Goldman, R. D., Pollard, T. D., Rosenbaum, J., eds.), pp. 797–821. Cold Spring Harbor: Cold Spring Harbor Laboratory.

    Google Scholar 

  • —, 1977: The contractile basis of ameboid movement. IV. The viscoelasticity and contractility of ameba cytoplasmin vivo. Exp. Cell Res.105, 413–426.

    PubMed  Google Scholar 

  • —,Condeelis, J. S., 1979: Cytoplasmic structure and contractility in ameboid cells. Internat. Rev. Cytol.56, 57–144.

    Google Scholar 

  • — —,Moore, P. L., Allen, R. D., 1973: The contractile basis of ameboid movement. I. The chemical control of motility in isolated cytoplasm. J. Cell Biol.59, 378–394.

    PubMed  Google Scholar 

  • —,Hellewell, S. B., Virgin, H. W., Heiple, J., 1979: The solation contraction coupling hypothesis of cell movement. In: Cell motility: molecules and organization (Hatano, S., Ishikawa, H., Sato, H., eds.), pp. 363–367. Tokyo: University of Tokyo Press.

    Google Scholar 

  • Wallach, D. P., Davies, J. A., Pastan, I., 1978: Purification of mammalian filamin. Similarity to high molecular weight actin binding protein in macrophages, platelets, fibroblasts and other tissues. J. biol. Chem.253, 3328–3335.

    Google Scholar 

  • Wehland, J., Weber, K., Gawlitta, W., Stockem, W., 1979: Effects of the actin-binding protein DNAse I on cytoplasmic streaming and ultrastructure ofAmoeba proteus. An attempt to explain amoeboid movement. Cell Tiss. Res.199, 353–372.

    Google Scholar 

  • Wolpert, L., Gingell, D., 1968: Cell surface membrane and amoeboid movement. Symp. Soc. exp. Biol.22, 169–198.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I dedicate this paper to the memory of Reginald J. Goldacre, deceased in December 1983, who twenty years ago introduced me to the study of amoebae.

Study supported by Research Project II. 1 of the Polish Academy of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grębecki, A. Relative motion inAmoeba proteus in respect to the adhesion sites. I. Behavior of monotactic forms and the mechanism of fountain phenomenon. Protoplasma 123, 116–134 (1984). https://doi.org/10.1007/BF01283582

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01283582

Keywords

Navigation