Skip to main content
Log in

Actin and actin-binding proteins in higher plants

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The actin cytoskeleton is a complex and dynamic structure that participates in diverse cellular events which contribute to plant morphogenesis and development. Plant actins and associated actin-binding proteins are encoded by large, differentially expressed gene families. The complexity of these gene families is thought to have been conserved to maintain a pool of protein isovariants with unique properties, thus providing a mechanistic basis for the observed diversity of plant actin functions. Plants contain actin-binding proteins which regulate the supramolecular organization and function of the actin cytoskeleton, including monomer-binding proteins (profilin), severing and dynamizing proteins (ADF/cofilin), and side-binding proteins (fimbrin, 135-ABP/villin, 115-ABP). Although significant progress in documenting the biochemical activities of many of these classes of proteins has been made, the precise roles of actin-binding proteins in vivo awaits clarification by detailed mutational analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayscough KR (1998) In vivo functions of actin-binding proteins. Curr Opin Cell Biol 10: 102–111

    PubMed  Google Scholar 

  • Baird WV, Meagher RB (1987) A complex gene superfamily encodes actin in petunia. EMBO J 6: 3223–3231

    PubMed  Google Scholar 

  • Ballweber E, Giehl K, Hannappel E, Huff T, Jockusch BM, Mannherz HG (1998) Plant profilin induces actin polymerization from actin: β-thymosin complexes and competes directly with β-thymosins and with negative co-operativity with DNase I for binding to actin. FEBS Lett 425: 251–255

    PubMed  Google Scholar 

  • Bamburg JR (1999) Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol 15: 185–230

    PubMed  Google Scholar 

  • —, Harris HE, Weeds AG (1980) Partial purification and characterization of an actin depolymerizing factor from brain. FEBS Lett 121: 178–182

    PubMed  Google Scholar 

  • —, McGough A, Ono S (1999) Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol 9: 364–370

    PubMed  Google Scholar 

  • Banno H, Chua N-H (2000) Characterization of theArabidopsis formin-like protein AFH1 and its interacting protein. Plant Cell Physiol 41: 617–626

    PubMed  Google Scholar 

  • Braun M, Baluska F, von Witsch M, Menzel D (1999) Redistribution of actin, profilin and phosphatidylinositol-4,5-bisphosphate in growing and maturing root hairs. Planta 209: 435–443

    PubMed  Google Scholar 

  • Bretscher A, Weber K (1980a) Villin is a major protein of the microvillus cytoskeleton which binds both G and F actin in a calcium-dependent manner. Cell 20: 839–847

    PubMed  Google Scholar 

  • — — (1980b) Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures. J Cell Biol 86: 335–340

    PubMed  Google Scholar 

  • Carlier M-F, Laurent V, Santolini J, Melki R, Didry D, Xia G-X, Hong Y, Chua N-H, Pantaloni D (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136: 1307–1322

    PubMed  Google Scholar 

  • —, Ressad F, Pantaloni D (1999) Control of actin dynamics in cell motility: role of ADF/cofilin. J Biol Chem 274: 33827–33830

    PubMed  Google Scholar 

  • Castresana J, Saraste M (1995) Does vav bind to F-actin through a CH domain? FEBS Lett 374: 149–151

    PubMed  Google Scholar 

  • Chung Y-Y, Magnuson NS, An GH (1995) Subcellular localization of actin depolymerizing factor in mature and germinating pollen. Mol Cells 5: 224–229

    Google Scholar 

  • Cruz-Ortega R, Cushman JC, Ownby JD (1997) cDNA clones encoding 1,3-β-glucanase and a fimbrin-like cytoskeletal protein are induced by Al toxicity in wheat roots. Plant Physiol 114: 1453–1460

    PubMed  Google Scholar 

  • Cvrcková F (2000) Are plant formins integral membrane proteins? Genome Biol 1: 001.1–001.7

    Google Scholar 

  • de Ruijter NCA, Emons AMC (1999) Actin-binding proteins in plant cells. Plant Biol 1: 26–35

    Google Scholar 

  • Didry D, Carlier M-F, Pantaloni D (1998) Synergy between actin depolymerizing factor/cofilin and profilin in increasing actin filament turnover. J Biol Chem 273: 25602–25611

    PubMed  Google Scholar 

  • Ding B, Kwon MO, Warnberg L (1996) Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco cells. Plant J 10: 157–164

    Google Scholar 

  • Eun S-O, Lee Y (1997) Actin filaments of guard cells are reorganized in response to light and abscisic acid. Plant Physiol 115: 1491–1498

    PubMed  Google Scholar 

  • — — (2000) Stomatal opening by fusicoccin is accompanied by depolymerization of actin filaments in guard cells. Planta 210: 1014–1017

    PubMed  Google Scholar 

  • Fedorov AA, Ball T, Mahoney NM, Valenta R, Almo SC (1997) The molecular basis for allergen cross-reactivity: crystal structure and IgE-epitope mapping of birch pollen profilin. Structure 5: 33–45

    PubMed  Google Scholar 

  • Feijó JA, Sainhas J, Hackett GR, Kunkel JG, Hepler PK (1999) Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J Cell Biol 144: 483–496

    PubMed  Google Scholar 

  • Fowler JE, Quatrano RS (1997) Plant cell morphogenesis: plasma membrane interactions with the cytoskeleton and cell wall. Annu Rev Cell Dev Biol 13: 697–743

    PubMed  Google Scholar 

  • Franklin-Tong VE, Ride JP, Read ND, Trewavas AJ, Franklin FCH (1993) The self-incompatibility response inPapaver rhoeas is mediated by cytosolic free calcium. Plant J 4: 163–177

    Google Scholar 

  • —, Hackett G, Hepler PK (1997) Ratio-imaging of Ca2+; in the self-incompatibility response in pollen tubes ofPapaver rhoeas. Plant J 12: 1375–1386

    Google Scholar 

  • Friederich E, Vancompernolle K, Huet C, Goethals M, Finidori J, Vandekerckhove J, Louvard D (1992) An actin-binding site containing a conserved motif of charged amino acid residues is essential for the morphogenetic effect of villin. Cell 70: 81–92

    PubMed  Google Scholar 

  • — —, Louvard D, Vandekerckhove J (1999) Villin function in the organization of the actin cytoskeleton: correlation of in vivo effects to its biochemical activities in vitro. J Biol Chem 274: 26751–26760

    PubMed  Google Scholar 

  • Fryberg EA, Fryberg CC, Briggs JR, Saville D, Beall CJ, Detchum A (1998) Functional nonequivalence ofDrosophila actin isoforms. Biochem Genet 36: 271–287

    PubMed  Google Scholar 

  • Geitmann A, Snowman BN, Emons AMC, Franklin-Tong VE (2000) Alterations in the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction inPapaver rhoeas. Plant Cell 12: 1239–1252

    PubMed  Google Scholar 

  • Gibbon BC, Staiger CJ (2000) Profilin. In: Staiger CJ, Baluska F, Volkmann D, Barlow P (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 45–65

    Google Scholar 

  • —, Zonia LE, Kovar DR, Hussey PJ, Staiger CJ (1998) Pollen profilin function depends on interaction with proline-rich motifs. Plant Cell 10: 981–994 (Correction, Plant Cell 11:1603,1999)

    PubMed  Google Scholar 

  • —, Kovar DR, Staiger CJ (1999) Latrunculin B has different effects on maize pollen germination and tube growth. Plant Cell 11: 2349–2363

    PubMed  Google Scholar 

  • Giehl K, Valenta R, Rothkegel M, Ronsiek M, Mannherz H-G, Jockusch BM (1994) Interaction of plant profilin with mammalian actin. Eur J Biochem 226: 681–689

    PubMed  Google Scholar 

  • Gilliland LU, Meagher RB (1999) Analysis of vegetative mutants in the conserved actin gene family ofArabidopsis. Mol Biol Cell 10 Suppl: 22a

    Google Scholar 

  • —, McKinney EC, Asmussen MA, Meagher RB (1998) Detection of deleterious genotypes in multigenerational studies I: disruptions in individual Arabidopsis actin genes. Genetics 149: 717–725

    PubMed  Google Scholar 

  • Glenney JR Jr, Kaulfus P, Matsudaira P, Weber K (1981a) F-actin binding and bundling properties of fimbrin, a major cytoskeletal protein of microvillus core filaments. J Biol Chem 256: 9283–9288

    PubMed  Google Scholar 

  • —, Geisler N, Kaulfus P, Weber K (1981b) Demonstration of at least two different actin-binding sites in villin, a calcium-regulated modulator of F-actin organization. J Biol Chem 256: 8156–8161

    PubMed  Google Scholar 

  • Goldschmidt-Clermont PJ, Furman MI, Wachsstock D, Safer D, Nachmias VT, Pollard TD (1992) The control of actin nucleotide exchange by thymosin β4 and profilin: a potential regulatory mechanism for actin polymerization in cells. Mol Biol Cell 3: 1015–1024

    PubMed  Google Scholar 

  • —, Kim JW, Machesky LM, Rhee SG, Pollard TD (1991) Regulation of phospholipase C-γ1 by profilin and tyrosine phosphorylation. Science 251: 1231–1233

    PubMed  Google Scholar 

  • Goldsmith SC, Pokala M, Shen W, Fedorov AA, Matsudaira P, Almo SC (1997) The structure of an actin-crosslinking domain from human fimbrin. Nat Struct Biol 4: 708–712

    PubMed  Google Scholar 

  • Guillén G, Valdés-López V, Noguez R, Olivares J, Rodríguez-Zapata LC, Pérez H, Vidali L, Villanueva MA, Sánchez F (1999) Profilin inPhaseolus vulgaris is encoded by two genes (only one expressed in root nodules) but multiple isoforms are generated in vivo by phosphorylation on tyrosine residues. Plant J 19: 497–508

    PubMed  Google Scholar 

  • Gungabissoon RA, Jiang C-J, Drøbak BK, Maciver SK, Hussey PJ (1998) Interaction of maize actin-depolymerising factor with actin and phosphoinositides and its inhibition of plant phospholipase C. Plant J 16: 689–696

    Google Scholar 

  • Gunsalus KC, Bonaccorsi S, Williams E, Verni F, Gatti M, Goldberg ML (1995) Mutations intwinstar, aDrosophila gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis. J Cell Biol 131: 1243–1259

    PubMed  Google Scholar 

  • Hanein D, Matsudaira P, DeRosier DJ (1997) Evidence for a conformational change in actin induced by fimbrin (N375) binding. J Cell Biol 139: 387–396

    PubMed  Google Scholar 

  • —, Volkmann N, Goldsmith S, Michon A-M, Lehman W, Craig R, DeRosier D, Almo S, Matsudaira P (1998) An atomic model of fimbrin binding to F-actin and its implications for filament crosslinking and regulation. Nat Struct Biol 5: 787–792

    PubMed  Google Scholar 

  • Hightower RC, Meagher RB (1985) Divergence and differential expression of soybean actin genes. EMBO J 4: 1–8

    PubMed  Google Scholar 

  • Holdaway-Clarke TL, Feijó JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9: 1999–2010

    PubMed  Google Scholar 

  • Hu S, Brady SR, Kovar DR, Staiger CJ, Clark GB, Roux SJ, Muday GK (2000) Identification of plant actin-binding proteins by F-actin affinity chromatography. Plant J 24: 127–137

    PubMed  Google Scholar 

  • Hwang J-U, Sun S, Yi H, Kim J, Lee Y (1997) Actin filaments modulate both stomatal opening and inward K+-channel activities in guard cells ofVicia faba L. Plant Physiol 115: 335–342

    PubMed  Google Scholar 

  • —, Eun S-O, Lee Y (2000) Structure and function of actin filaments in mature guard cells. In: Staiger CJ, Baluska F, Volkmann D, Barlow P (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 427–436

    Google Scholar 

  • Igarashi H, Vidali L, Yokota E, Sonobe S, Hepler PK, Shimmen T (1999) Actin filaments purified from tobacco cultured BY-2 cells can be translocated by plant myosin. Plant Cell Physiol 40: 1167–1171

    Google Scholar 

  • Iida K, Moriyama K, Matsumoto S, Kawasaki H, Nishida E, Yahara I (1993) Isolation of a yeast essential gene,COF1, that encodes a homologue of mammalian cofilin, a low-M r actin-binding and depolymerizing protein. Gene 124: 115–120

    PubMed  Google Scholar 

  • Janmey PA, Stossel TP, Allen PG (1998) Deconstructing gelsolin: identifying sites that mimic or alter binding to actin and phosphoinositides. Chem Biol 5: R81-R85

    PubMed  Google Scholar 

  • Jiang C-J, Weeds AG, Hussey PJ (1997a) The maize actin-depolymerizing factor, ZmADF3, redistributes to the growing tip of elongating root hairs and can be induced to translocate into the nucleus with actin. Plant J 12: 1035–1043

    PubMed  Google Scholar 

  • —, Khan S, Hussey PJ (1997b) F-actin and G-actin binding are uncoupled by mutation of conserved tyrosine residues in maize actin depolymerizing factor (ZmADF). Proc Natl Acad Sci USA 94: 9973–9978

    PubMed  Google Scholar 

  • Jonckheere V, Lambrechts A, Vandekerckhove J, Ampe C (1999) Dimerization of profilin II upon binding the (GP5)3 peptide from VASP overcomes the inhibition of actin nucleation by profilin II and thymosin β4. FEBS Lett 447: 257–263

    PubMed  Google Scholar 

  • Kandasamy MK, McKinney EC, Meagher RB (1999) The late pollen-specific actins in angiosperms. Plant J 18: 681–691

    PubMed  Google Scholar 

  • Kang F, Purich DL, Southwick FS (1999) Profilin promotes barbedend actin filament assembly without lowering the critical concentration. J Biol Chem 274: 36963–36972

    PubMed  Google Scholar 

  • Karakesisoglou I, Schleicher M, Gibbon BC, Staiger CJ (1996) Plant profilins rescue the aberrant phenotype of profilindeficientDictyostelium cells. Cell Motil Cytoskeleton 34: 36–47

    PubMed  Google Scholar 

  • Kim M, Hepler PK, Eun S-O, Ha KS, Lee Y (1995) Actin filaments in mature guard cells are radially distributed and involved in stomatal movements. Plant Physiol 109: 1077–1084

    PubMed  Google Scholar 

  • Kim S-R, Kim Y, An G (1993) Molecular cloning and characterization of anther-preferential cDNA encoding a putative actin-depolymerizing factor. Plant Mol Biol 21: 39–45

    PubMed  Google Scholar 

  • Klahre U, Friederich E, Kost B, Louvard D, Chua N-H (2000) Villinlike actin-binding proteins are expressed ubiquitously in Arabidopsis. Plant Physiol 122: 35–47

    PubMed  Google Scholar 

  • Kobayashi I, Kobayashi Y, Hardham AR (1994) Dynamic reorganization of microtubules and microfilaments in flax cells during the resistance response to flax rust infection. Planta 195: 237–247

    Google Scholar 

  • — —, Funaki Y, Fujimoto S, Takemoto T, Kunoh H (1997) Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. Plant J 11: 525–537

    Google Scholar 

  • Kobayashi Y, Yamada M, Kobayashi I, Kunoh H (1997) Actin microfilaments are required for the expression of nonhost resistance in higher plants. Plant Cell Physiol 38: 725–733

    Google Scholar 

  • Kohno T, Shimmen T (1987) Ca2+-induced fragmentation of actin filaments in pollen tubes. Protoplasma 141: 177–179

    Google Scholar 

  • — — (1988) Mechanism of Ca2+ inhibition of cytoplasmic streaming in lily pollen tubes. J Cell Sci 91: 501–509

    Google Scholar 

  • Kost B, Spielhofer P, Chua N-H (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16: 393–401

    PubMed  Google Scholar 

  • —, Mathur J, Chua N-H (1999) Cytoskeleton in plant development. Curr Opin Plant Biol 2: 462–470

    PubMed  Google Scholar 

  • Kovar DR, Staiger CJ (2000) Actin depolymerizing factor. In: Staiger CJ, Baluska F, Volkmann D, Barlow P (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 67–85

    Google Scholar 

  • —, Drøbak BK, Staiger CJ (2000a) Maize profilin isoforms are functionally distinct. Plant Cell 12: 583–598

    PubMed  Google Scholar 

  • —, Staiger CJ, Weaver EA, McCurdy DW (2000b) AtFiml is an actin filament crosslinking protein fromArabidopsis thaliana Plant J 24: 625–636

    PubMed  Google Scholar 

  • - Gibbon BC, McCurdy DW, Staiger CJ (2001) Fluorescently labelled fimbrin decorates a dynamic actin filament network in live plant cells. Planta (in press)

  • Kropf DL, Bisgrove SR, Hable WE (1998) Cytoskeletal control of polar growth in plant cells. Curr Opin Cell Biol 10: 117–122

    PubMed  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11: 2283–2290

    PubMed  Google Scholar 

  • Kurashima K, D'Souza S, Szászi K, Ramjeesingh R, Orlowski J, Grinstein S (1999) The apical Na+/H+ exchanger isoform NHE3 is regulated by the actin cytoskeleton. J Biol Chem 274: 29843–29849

    PubMed  Google Scholar 

  • Lappalainen P, Fedorov EV, Fedorov AA, Almo SC, Drubin DG (1997) Essential functions and actin-binding surfaces of yeast cofilin revealed by systematic mutagenesis. EMBO J 16: 5520–5530

    PubMed  Google Scholar 

  • Liu X, Yen L-F (1992) Purification and characterization of actin from maize pollen. Plant Physiol 99: 1151–1155

    Google Scholar 

  • Lopez I, Anthony RG, Maciver SK, Jiang C-J, Khan S, Weeds AG, Hussey PJ (1996) Pollen specific expression of maize genes encoding actin depolymerizing factor-like proteins. Proc Natl Acad Sci USA 93: 7415–7420

    PubMed  Google Scholar 

  • Machesky LM, Insall RH (1999) Signaling to actin dynamics. J Cell Biol 146: 267–272

    PubMed  Google Scholar 

  • Maciver SK (1998) How ADF/cofilin depolymerizes actin filaments. Curr Opin Cell Biol 10: 140–144

    PubMed  Google Scholar 

  • Mahoney NM, Janmey PA, Almo SC (1997) Structure of the profilin-poly-L-proline complex involved in morphogenesis and cytoskeletal regulation. Nat Struct Biol 4: 953–960

    PubMed  Google Scholar 

  • Mathur J, Spielhofer P, Kost B, Chua N-H (1999) The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis inAmbidopsis thaliana. Development 126: 5559–5568

    PubMed  Google Scholar 

  • Matsudaira P (1991) Modular organization of actin crosslinking proteins. Trends Biol Sci 16: 87–92

    Google Scholar 

  • —, Burgess DR (1979) Identification and organization of the components in the isolated microvillus cytoskeleton. J Cell Biol 83: 667–673

    PubMed  Google Scholar 

  • McCurdy DW, Kim M (1998) Molecular cloning of a novel fimbrinlike cDNA fromArabidopsis thaliana. Plant Mol Biol 36: 23–31

    PubMed  Google Scholar 

  • —, Staiger CJ (2000) Fimbrin. In: Staiger CJ, Baluska F, Volkmann D, Barlow P (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 87–102

    Google Scholar 

  • McDowell JM, Huang S, McKinney EC, An Y-Q, Meagher RB (1996) Structure and evolution of the actin gene family inArabidopsis thaliana. Genetics 142: 587–602

    PubMed  Google Scholar 

  • McElroy D, Rothenberg M, Reece KS, Wu R (1990) Characterization of the rice (Oryza sativa) actin gene family. Plant Mol Biol 15: 257–268

    PubMed  Google Scholar 

  • McGough A (1998) F-actin-binding proteins. Curr Opin Struct Biol 8: 166–176

    PubMed  Google Scholar 

  • —, Pope B, Chiu W, Weeds A (1997) Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol 138: 771–781

    PubMed  Google Scholar 

  • McKim KS, Matheson C, Marra MA, Wakarchuk MF, Baillie DL (1994) TheCaenorhabditis elegans unc-60 gene encodes proteins homologous to a family of actin-binding proteins. Mol Gen Genet 242: 346–357

    PubMed  Google Scholar 

  • McLean BG, Eubanks S, Meagher RB (1990) Tissue-specific expression of divergent actins in soybean root. Plant Cell 2: 335–344

    PubMed  Google Scholar 

  • —, Hempel FD, Zambryski PC (1997) Plant intercellular communication via plasmodesmata. Plant Cell 9: 1147–1156

    PubMed  Google Scholar 

  • Meagher RB (1991) Divergence and differential expression of actin gene families in higher plants. Int Rev Cytol 125: 139–163

    PubMed  Google Scholar 

  • —, Williamson RE (1994) The plant cytoskeleton. In: Meyerowitz E, Somerville C (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 1049–1084

    Google Scholar 

  • —, McKinney EC, Kandasamy MK (1999a) Isovariant dynamics expands and buffers the responses of complex systems: the diverse plant actin gene family. Plant Cell 11: 1–12

    PubMed  Google Scholar 

  • — —, Vitale A (1999b) The evolution of new structures: clues from plant cytoskeletal genes. Trends Genet 15: 278–284

    PubMed  Google Scholar 

  • Messerli M, Robinson KR (1997) Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes ofLilium longiflorum. J Cell Sci 110: 1269–1278

    PubMed  Google Scholar 

  • — — (1998) Cytoplasmic acidification and current influx follow growth pulses ofLilium longiflorum pollen tubes. Plant J 16: 87–91

    Google Scholar 

  • Miller DD, Callaham DA, Gross DJ, Hepler PK (1992) Free Ca2+ gradient in growing pollen tubes ofLilium. J Cell Sci 101: 7–12

    Google Scholar 

  • —, Lancelle SA, Hepler PK (1996) Actin microfilaments do not form a dense meshwork inLilium longiflorum pollen tube tips. Protoplasma 195: 123–132

    Google Scholar 

  • —, de Ruijter NCA, Bisseling T, Emons AMC (1999) The role of actin in root hair morphogenesis: studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J 17: 141–154

    Google Scholar 

  • Moon A, Drubin DG (1995) The ADF/cofilin proteins: stimulusresponsive modulators of actin dynamics. Mol Biol Cell 6: 1423–1431

    PubMed  Google Scholar 

  • —, Janmey PA, Louie KA, Drubin DG (1993) Cofilin is an essential component of the yeast cortical cytoskeleton. J Cell Biol 120: 421–435

    PubMed  Google Scholar 

  • Moutinho A, Trewavas AJ, Malho R (1998) Relocation of a Ca2+-dependent protein kinase activity during pollen tube reorientation. Plant Cell 10: 1499–1509

    PubMed  Google Scholar 

  • Nakayasu T, Yokota E, Shimmen T (1998) Purification of an actinbinding protein composed of 115-kDa polypeptide from pollen tubes of lily. Biochem Biophys Res Commun 249: 61–65

    PubMed  Google Scholar 

  • Nick P (1999) Signals, motors, morphogenesis: the cytoskeleton in plant development. Plant Biol 1: 169–179

    Google Scholar 

  • Nishida E, Maekawa S, Sakai H (1984) Cofilin, a protein in porcine brain that binds to actin filaments and inhibits their interactions with myosin and tropomyosin. Biochemistry 23: 5307–5313

    PubMed  Google Scholar 

  • Pantaloni D, Carlier M-F (1993) How profilin promotes actin filament assembly in the presence of thymosin β4. Cell 75: 1007–1014

    PubMed  Google Scholar 

  • Perelroizen I, Marchand J-B, Blanchoin L, Didry D, Carlier M-F (1994) Interaction of profilin with G-actin and poly(L-proline). Biochemistry 33: 8472–8478

    PubMed  Google Scholar 

  • —, Didry D, Christensen H, Chua N-H, Carlier M-F (1996) Role of nucleotide exchange and hydrolysis in the function of profilin in actin assembly. J Biol Chem 271: 12302–12309

    PubMed  Google Scholar 

  • Pollard TD, Almo S, Quirk S, Vinson V, Lattman EE (1994) Structure of actin binding proteins: insights about function at atomic resolution. Annu Rev Cell Biol 10: 207–249

    Google Scholar 

  • Prassler J, Stocker S, Marriott G, Heidecker M, Kellermann J, Gerisch G (1997) Interaction of aDictyostelium member of the plastin/fimbrin family with actin filaments and actin-myosin complexes. Mol Biol Cell 8: 83–95

    PubMed  Google Scholar 

  • Rathore KS, Cork RJ, Robinson KR (1991) A cytoplasmic gradient of Ca2+ is correlated with the growth of lily pollen tubes. Dev Biol 148: 612–619

    PubMed  Google Scholar 

  • Ren H, Gibbon BC, Ashworth SL, Sherman DM, Yuan M, Staiger CJ (1997) Actin purified from maize pollen functions in living plant cells. Plant Cell 9: 1445–1457

    PubMed  Google Scholar 

  • Ressad F, Didry D, Xia G-X, Hong Y, Chua N-H, Pantaloni D, Carlier M-F (1998) Kinetic analysis of the interaction of actin-depolymerizing factor (ADF)/cofilin with G- and F-actins: comparison of plant and human ADFs and effect of phosphorylation. J Biol Chem 273: 20894–20902

    PubMed  Google Scholar 

  • — —, Egile C, Pantaloni D, Carlier M-F (1999) Control of actin filament length and turnover by actin depolymerizing factor (ADF/cofilin) in the presence of capping proteins and ARP2/3 complex. J Biol Chem 274: 20970–20976

    PubMed  Google Scholar 

  • Rozycka M, Khan S, Lopez I, Greenland AJ, Hussey PJ (1995) AZea mays pollen cDNA encoding a putative actin-depolymerizing factor. Plant Physiol 107: 1011–1012

    PubMed  Google Scholar 

  • Schleicher M, André B, Andréoli C, Eichinger L, Haugwitz M, Hofmann A, Karakesisoglou J, Stockelhuber M, Noegel AA (1995) Structure/function studies on cytoskeletal proteins inDictyostelium amoeba as a paradigm. FEBS Lett 369: 38–42

    PubMed  Google Scholar 

  • Schlüter K, Jockusch BM, Rothkegel M (1997) Profilins as regulators of actin dynamics. Biochim Biophys Acta 1359: 97–109

    PubMed  Google Scholar 

  • Schmidt A, Hall MN (1998) Signaling to the actin cytoskeleton. Annu Rev Cell Dev Biol 14: 305–338

    PubMed  Google Scholar 

  • Smertenko AP, Jiang C-J, Simmons NJ, Weeds AG, Davies DR, Hussey PJ (1998) Ser6 in the maize actin-depolymerizing factor, ZmADF3, is phosphorylated by a calcium-stimulated protein kinase and is essential for the control of functional activity. Plant J 14: 187–194

    PubMed  Google Scholar 

  • Snowman BN, Geitmann A, Clarke SR, Staiger CJ, Franklin FCH, Emons AMC, Franklin-Tong VE (2000) Signalling and the cytoskeleton of pollen tubes ofPapaver rhoeas. Ann Bot 85 Suppl A: 49–57

    Google Scholar 

  • Staiger CJ (2000) Signaling to the actin cytoskeleton in plants. Annu Rev Plant Physiol Plant Mol Biol 51: 257–288

    PubMed  Google Scholar 

  • —, Yuan M, Valenta R, Shaw PJ, Warn RM, Lloyd CW (1994) Microinjected profilin affects cytoplasmic streaming in plant cells by rapidly depolymerizing actin microfilaments. Curr Biol 4: 215–219

    PubMed  Google Scholar 

  • Staiger CJ, Gibbon BC, Kovar DR, Zonia LE (1997) Profllin and actin depolymerizing factor: modulators of actin organization in plants. Trends Plant Sci 2: 275–281

    Google Scholar 

  • —, Baluska F, Volkmann D, Barlow P (eds) (2000) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht

    Google Scholar 

  • Szymanski DB, Marks MD, Wick SM (1999) Organized F-actin is essential for normal trichome morphogenesis in Arabidopsis. Plant Cell 11: 2331–2347

    PubMed  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48: 461–491

    PubMed  Google Scholar 

  • Thangavelu M, Belostotsky D, Bevan MW, Flavell RB, Rogers HJ, Lonsdale DM (1993) Partial characterization of theNicotiana tabacum actin gene family: evidence for pollen-specific expresssion of one of the gene family members. Mol Gen Genet 240: 290–295

    PubMed  Google Scholar 

  • Thorn KS, Christensen HEM, Shigeta R Jr, Huddler D Jr, Shalaby L, Lindberg U, Chua N-H, Schutt CE (1997) The crystal structure of a major allergen from plants. Structure 5: 19–32

    PubMed  Google Scholar 

  • Tominaga M, Yokota E, Vidali L, Sonobe S, Hepler PK, Shimmen T (2000) The role of plant villin in the organization of the actin cytoskeleton, cytoplasmic streaming and the architecture of the transvacuolar strand in root hair cells ofHydrocharis. Planta 210: 836–843

    PubMed  Google Scholar 

  • Valenta R, Duchêne M, Pettenburger K, Sillaber C, Valent P, Bettelheim P, Breitenbach M, Rumpold H, Kraft D, Scheiner O (1991) Identification of profilin as a novel pollen allergen: IgE autoreactivity in sensitized individuals. Science 253: 557–560

    PubMed  Google Scholar 

  • — —, Ebner C, Valent P, Sillaber C, Deviller P, Ferreira F, Tejkl M, Edelman H, Kraft D, Scheiner O (1992) Profilins constitute a novel family of functional plant pan-allergens. J Exp Med 175: 377–385

    PubMed  Google Scholar 

  • Valster AH, Pierson ES, Valenta R, Hepler PK, Emons AMC (1997) Probing the plant actin cytoskeleton during cytokinesis and interphase by profilin microinjection. Plant Cell 9: 1815–1824

    PubMed  Google Scholar 

  • Vidali L, Hepler PK (1997) Characterization and localization of profilin in pollen grains and tubes ofLilium longiflorum. Cell Motil Cytoskeleton 36: 323–338

    PubMed  Google Scholar 

  • —, Yokota E, Cheung AY, Shimmen T, Hepler PK (1999) The 135 kDa actin-bundling protein fromLilium longiflorum pollen is the plant homologue of villin. Protoplasma 209: 283–291

    Google Scholar 

  • von Witsch M, Baluska F, Staiger CJ, Volkmann D (1998) Profilin is associated with the plasma membrane in microspores and pollen. Eur J Cell Biol 77: 303–312

    PubMed  Google Scholar 

  • White RG, Badelt K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180: 169–184

    Google Scholar 

  • Xia G, Ramachandran S, Hong Y, Chan Y-S, Simanis V, Chua N-H (1996) Identification of plant cytoskeletal, cell cycle-related and polarity-related proteins usingSchizosaccharomyces pombe. Plant J 10: 761–769

    PubMed  Google Scholar 

  • Yokota E, Shimmen T (1994) Isolation and characterization of plant myosin from pollen tubes of lily. Protoplasma 177: 153–162

    Google Scholar 

  • — — (1999) The 135-kDa actin-bundling protein from lily pollen tubes arranges F-actin into bundles with uniform polarity. Planta 209: 264–266

    PubMed  Google Scholar 

  • — — (2000) Characterization of native actin-binding proteins from pollen: myosin and the actin-bundling proteins, 135-ABP and 115-ABP. In: Staiger CJ, Baluska F, Volkmann D, Barlow P (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 103–118

    Google Scholar 

  • —, Takahara K-i, Shimmen T (1998) Actin-bundling protein isolated from pollen tubes of lily. Plant Physiol 116: 1421–1429

    PubMed  Google Scholar 

  • —, Muto S, Shimmen T (2000) Calcium-calmodulin suppresses the filamentous actin-binding activity of 135-kilodalton actin-bundling protein from lily pollen tubes. Plant Physiol 123: 645–654

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. McCurdy.

Additional information

Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCurdy, D.W., Kovar, D.R. & Staiger, C.J. Actin and actin-binding proteins in higher plants. Protoplasma 215, 89–104 (2001). https://doi.org/10.1007/BF01280306

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01280306

Keywords

Navigation