Skip to main content
Log in

Studies on the biochemistry and fine structure of silica shell formation in diatoms

IX. Sequential valve formation in a centric diatom,Chaetoceros rostratum

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Valve formation in a centric diatom,Chaetoceros rostratum Lauder is described. Following cytokinesis, an intracellular cytoplasmic strand traversed by mitochondria and microtubules remains between the sibling cells. The primary silicification site in the new cells is the eccentrically located labiate process area. A cytoplasmic labiate process apparatus is closely associated with labiate process formation. Silicification of the intercellular cytoplasmic strand results in firm intercellular linkage and division of elongated mitochondria. At intermediate developing stages, the valve has an unusual diagonal symmetry. The seta is the last valve component to be formed. Microtubules and a hitherto undescribed structure, the “striated dense body”, are involved in seta formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blank, G. S., Sullivan, C. W., 1980: Control of silicic acid metabolism, silica valve symmetry and pattern formation during synchronized growth of the diatomNavicula pelliculosa. J. Phycol.16, 5 a, abstract.

    Google Scholar 

  • Chiappino, M. L., Volcani, B. E., 1977: Studies on the biochemistry and fine structure of silica shell formation in diatoms. VII. Sequential cell wall development in the pennateNavicula pelliculosa. Protoplasma93, 205–221.

    Google Scholar 

  • Coombs, J., Lauritis, J. A., Darley, W. M., Volcani, B. E., 1968: Studies on the biochemistry and fine structure of silica shell formation in diatoms. V. Effects of colchicine on wall formation inNavicula pelliculosa (Bréb.) Hilse. Z. Pflanzenphysiol.59, 124–152.

    Google Scholar 

  • Evensen, D. L., Hasle, G. R., 1975: The morphology of someChaetoceros (Bacillariophyceae) species as seen in electron microscopes. Nova Hedwigia, Beih.53, 153–184.

    Google Scholar 

  • Fryxell, G. A., 1978: Chain-forming diatoms: three species ofChaetoceraceae. J. Phycol.14, 62–71.

    Google Scholar 

  • —,Medlin, L. K., 1981: Chain-forming diatoms: evidence of parallel evolution inChaetoceros. Cryptogamie: Algologie, II,1, 3–29.

    Google Scholar 

  • Hasle, G. R., 1974: The “mucilage pore” of pennate diatoms. Nova Hedwigia, Beih.45, 167–186.

    Google Scholar 

  • Hoffmann, H.-P., Avers, C. J., 1973: Mitochondrion of yeast: ultrastructural evidence for one giant, branched organelle per cell. Science181, 749–751.

    Google Scholar 

  • Hoops, H. J., Floyd, G. L., 1979: Ultrastructure of the centric diatomCyclotella meneghiniana: vegetative cell and auxospore development. Phycologia18, 424–435.

    Google Scholar 

  • Iyengar, M. O. P., Subrahmanyan, R., 1944: On the structure and development of the spines or setae of some centric diatoms. Proc. nat. Acad. Sci. India14, 114–124.

    Google Scholar 

  • Kato, K. H., Ishikawa, M., 1982: Flagellum formation and centriolar behavior during spermatogenesis of the sea urchin,Hemicentrotus pulcherrimus. Acta Embryol. Morph. Exper. n. s.3, 49–66.

    Google Scholar 

  • Kolb-Bachofen, V., Vogell, W., 1975: Mitochondrial proliferation in synchronized cells ofTetrahymena pyriformis: a morphometric study by electron microscopy on the biogenesis of mitochondria during the cell cycle. Exp. Cell Res.94, 95–105.

    Google Scholar 

  • Lafontaine, J. G., Allard, C., 1964: A light and electron microscope study of the morphological changes induced in rat liver cells by the azodye 2-Me-DAB. J. Cell Biol.22, 143–172.

    Google Scholar 

  • Li, C.-W., Volcani, B. E., 1984: Aspects of silicification in wall morphogenesis of diatoms. Phil. Trans. R. Soc. Lond. B,304, 519–528.

    Google Scholar 

  • — —, 1985: Studies on the biochemistry and fine structure of silica shell formation in diatoms. VIII. Morphogenesis of the cell wall in a centric diatom,Ditylum brightwellii. Protoplasma124, 10–29.

    Google Scholar 

  • Mann, D. G., 1981: A note on valve formation and homology in the diatom genusCymbella. Ann. Bot. (Lond.)47, 267–269.

    Google Scholar 

  • —, 1982: Structure, life history and systematics ofRhoicosphenia (Bacillariophyta). I. The vegetative cell ofRh. curvata. J. Phycol.18, 162–176.

    Google Scholar 

  • McLachlan, J., 1973: Growth media-marine. In: Handbook of phycological methods and growth measurements (Stein, J. R., ed.), pp. 25–51. Cambridge: University Press.

    Google Scholar 

  • Peragallo, H., 1907: Sur la division cellulaire duBiddulphia mobiliensis. Soc. sci. d'Arcachon Stat. Biol. Trav. des lab.10, 1–26.

    Google Scholar 

  • Pickett-Heaps, J. D., Tippit, D. H., Andreozzi, J. A., 1979: Cell division in the pennate diatomPinnularia. IV. Valve morphogenesis. Biol. Cellulaire35, 199–203.

    Google Scholar 

  • —,Kowalski, S. E., 1981: Valve morphogenesis and the microtubule center of the diatomHantzschia amphioxys. Europ. J. Cell Biol.25, 150–170.

    Google Scholar 

  • Posakony, J. W., England, J. M., Attardi, G., 1977: Mitochondrial growth and division during the cell cycle in HeLa cells. J. Cell Biol.74, 468–491.

    Google Scholar 

  • Reynolds, E. S., 1963: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol.17, 208–212.

    Google Scholar 

  • Reimann, B., 1960: Bildung, Bau und Zusammenhang der Bacillariophyceenschalen (elektronenmikroskopische Untersuchungen). Nova Hedwigia2, 349–373.

    Google Scholar 

  • Schmid, A. M., 1979 a: The development of structure in the shells of diatoms. Nova Hedwigia, Beih.64, 219–236.

    Google Scholar 

  • —, 1979 b: Wall morphogenesis in diatoms: the role of microtubules during pattern formation. Europ. J. Cell Biol.20, 125.

    Google Scholar 

  • —, 1980: Valve morphogenesis in diatoms: a pattern-related filamentous system in pennates and the effect of APM, colchicine and osmotic pressure. Nova Hedwigia33, 811–847.

    Google Scholar 

  • —,Schulz, D., 1979: Wall morphogenesis in diatoms: deposition of silica by cytoplasmic vesicles. Protoplasma100, 267–288.

    Google Scholar 

  • —,Borowitzka, M. A., Volcani, B. E., 1981: Morphogenesis and biochemistry of diatom cell walls. In: Cytomorphogenesis in plants (Cell Biology Monographs, Vol. 8,Kiermayer, O., ed., pp. 63–97). Wien-New York: Springer.

    Google Scholar 

  • Schnepf, E., Deichgräber, G., Drebes, G., 1980: Morphogenetic process inAttheya decora (Bacillariophyceae, Biddulphiineae). Plant Syst. Evol.135, 265–277.

    Google Scholar 

  • Schulz, D., Wedemeyer, G., 1981: Colchicine effects on diatom cell-wall morphogenesis. In: Proceedings of the sixth symposium on recent and fossil diatoms (Ross, R., ed.), pp. 457–475. Koenigstein: Otto Koeltz Science Publishers.

    Google Scholar 

  • Spurr, A. R., 1969: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–43.

    Google Scholar 

  • Tippit, D. H., Pickett-Heaps, J. D., 1977: Mitosis in the pennate diatomSurirella ovalis. J. Cell Biol.73, 705–727.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C.W., Volcani, B.E. Studies on the biochemistry and fine structure of silica shell formation in diatoms. Protoplasma 124, 30–41 (1985). https://doi.org/10.1007/BF01279721

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01279721

Keywords

Navigation