Skip to main content
Log in

Optimization and experimental investigations of stiffened, axially compressed CFRP-panels

  • Research Papers
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

Thin-walled, unstiffened and stiffened shell structures made of fibre composite materials are frequently applied due to their high stiffness/strength to weight ratios in all fields of lightweight constructions. One major design criterion of these structures is their sensitivity with respect to buckling failure when subjected to inplane compression and shear loads. This paper describes how the structural analysis program BEOS (Buckling of Eccentrically Orthotropic Sandwich shells) is combined with the optimization procedure SAPOP (Structural Analysis Program and Optimization Procedure) to produce a tool for designing optimum CFRP-panels against buckling. Experimental investigations are used to justify the described procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C, C b :

material stiffness matrices (shell, beam stiffener)

f :

objective function

F cr :

buckling load

g:

vector of inequality constraints

K,K g ,\(\tilde K^{mn} \) :

stiffness matrix, geometrical stiffness matrix, condensed stiffness matrix

n s ,n b :

vector of stress resultants (shell, beam stiffener)

N x ,N y ,N xy :

membrane forces of the shell

P x ,P y ,P xy :

membrane forces of the stiffener

r x ,r y ,r xy :

radii of curvature

n :

n-dimensional Euclidean space

W :

strain energy

u, v, w :

deformations inx, y, z direction

x, y, z :

global coordinate system

x :

vector of design variables

y, z :

right-hand side, left-hand side eigenvector

δ:

variational symbol

δ k i :

Kronecker's delta

e s ,e b :

strain vectors (shell, beam stiffener)

λ, λcr :

load factor, buckling load factor

Π, Πe :

total energy, external potential energy

References

  • Bushnell, D. 1987: PANDA2-Program for minimum weight design of stiffened, composite, locally buckled panels.Comp. & Struct. 25,469–605

    Google Scholar 

  • Butler, R.; Williams, F.W. 1992: Optimum design using VI-CONOPT, a buckling and strength constraint program for prismatic assemblies of anisotropic plates.Comp. & Struct. 43, 699–708

    Google Scholar 

  • Chen, T.L.C.; Bert, C.W. 1976: Design of composite material plates for maximum compressive buckling Load.Proc. Oklahoma Acad. Sci. 56, 104–107

    Google Scholar 

  • Eschenauer, H. 1989: The “three columns” for treating problems in optimum structural design. In: Bergmann, H.W. (ed.)Optimization, pp. 1–21. Berlin, Heidelberg, New-York: Springer

    Google Scholar 

  • Eschenauer, H.; Geilen, J.; Wahl, H.J. 1993: SAPOP—An optimization procedure for multicriteria structural design. In: Hörnlein, H.R.E.M.; Schittkowski, K. (eds.)Software systems for structural optimization, pp. 207–227.Int. Series of Num. Math. 110, Basel: Birkhäuser

    Google Scholar 

  • Geier, B. 1972:Die Anwendung des Verfahrens von Rayleigh-Ritz mit maschenweiser Interpolation auf die Berechnung der Beullasten flacher Sandwichschalen. Dissertation, TU-Braunschweig

  • Geier, B.; Seibel, M.; Eschenauer, H. 1995: Optimization of stiffened CFRP-shells endangered by buckling.ZAMM 75, S593-S594

    Google Scholar 

  • Grenestedt, J.L. 1990: Composite plate optimization only requires one parameter.Struct. Optim. 2, 29–37

    Google Scholar 

  • Hirano, Y. 1979: Optimum design of laminated plates under axial compression.AIAA 17, 1017–1019

    Google Scholar 

  • Jones, R.M. 1975:Mechanics of composite materials. Tokyo: McGraw-Hill

    Google Scholar 

  • Le Riche, R.; Haftka, R.T. 1991: Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm.Proc. 32-nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., pp. 2564–2575

  • Mesquita, L.; Kamat, M.P. 1987: Optimization of stiffened laminated composite plates with frequency constraints.Eng. Opt. 11, 77–88

    Google Scholar 

  • Muc, A. 1988: Optimal fibre orientation for simply-supported, angle-ply plates under biaxial compression.Comp. & Struct. 9, 161–172

    Google Scholar 

  • Pflüger, A. 1975:Stabilitätsprobleme der Elastostatik. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Rao, K.P.; Tripathy, B. 1991: Composite cylindrical panelsoptimum lay-up for buckling by ranking.Comp. & Struct. 38, 217–225

    Google Scholar 

  • Rohwer, K. 1976: Buckling of discretely stiffened shells by meshwise Rayleigh-Ritz-Method.California Institute of Technology, SM76-14

  • Ross, C. 1991:Strukturoptimierung mit Nebenbedingungen aus der Dynamik. Dissertation, Fortschritt-Berichte VDI, Reihe 20, Nr. 38, Düsseldorf: VDI

    Google Scholar 

  • Seibel, M. 1996:Optimale Auslegung von versteiften Faserverbund-Flächentragwerken unter Beul- und Eigenfrequenzrestriktionen. Dissertation, Universität-GH Siegen, TIM-Forschungsbericht T10-06.96

  • Seibel, M.; Geier, B.; Zimmermann, R.; Eschenauer, H. 1995: Structural and sensitivity analysis and optimization of stiffened plates and shells.Proc. CEAS Int. Forum on Aeroelast. and Struct. Dynam. (held in Manchester), pp. 32.1–32.14

  • Seyranian, A.P.; Lund, E.; Olhoff, N.: Multiple eigenvalues in structural optimization problems.Struct. Optim. 8, 207–227

  • Wang, J.T.S. 1982: Best angles against buckling for rectangular laminates. In: Hayashi, T.; Kawata, K.; Umekawa, S. (eds.)Progress in Science and Engineering of Composites. Tokyo

  • Zimmermann, R. 1992:Optimierung axial gedrückter CFK-Zylinderschalen. Dissertation, Fortschritt-Berichte VDI, Reihe 1, Nr. 207, Düsseldorf: VDI

    Google Scholar 

  • Zurmühl, R.; Falk, S. 1984:Matrizen und ihre Anwendungen. Teil 1: Grundlagen; Teil 2: Numerische Methoden. Berlin, Heidelberg, New York: Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A (^) sign above a variable points out that this variable belongs to the prebuckling state.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seibel, M., Geier, B., Zimmermann, R. et al. Optimization and experimental investigations of stiffened, axially compressed CFRP-panels. Structural Optimization 15, 124–131 (1998). https://doi.org/10.1007/BF01278498

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01278498

Keywords

Navigation