Skip to main content
Log in

An ultrastructural approach to the adaptive role of the cell wall in the intertidal algaFucus virsoides

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The ultrastructure of the cell wall and the distribution of alginate, cellulose and fucoidans were studied in the intertidal algaFucus virsoides. Microanalysis and precipitation with KPA revealed a cation localization in the wall, mainly corresponding with sulphated polysaccharide distribution. Thus, the adaptive resistance to changes in ionic environment seems to take place through a cation binding to the cell wall polysaccharides, principally at the thallus surface, employing an avoidance mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayadi, A., Monnier, A., Demarty, M., Thellier, M., 1980: Échanges ioniques cellulaires: cas des plantes en milieu salé. Rôle particulier des parois cellulaires. Physiol. vég.18, 89–104.

    Google Scholar 

  • Behnke, O., Zelander, T., 1970: Preservation of intercellular substances by the cationic dye Alcian Blue in preparative procedures for electron microscopy. J. Ultrastruct. Res.31, 424–438.

    Google Scholar 

  • Bodard, M., Christiaen, D., Verdus, M., 1983: Mise au point sur les phycocolloïdes. Bull. Soc. Bot. N. France36, 1–14.

    Google Scholar 

  • Burns, A. R., Oliveira, L., Bisalputra, T., 1982 a: A histochemical study of bud initiation in the brown algaSphacelaria furcigera. New Phytol.92, 297–307.

    Google Scholar 

  • — — —, 1982 b: A morphological study of bud initiation in the brown algaSphacelaria furcigera. New Phytol.92, 309–325.

    Google Scholar 

  • — — —, 1984: A cytochemical study of cell wall differentiation during bud initiation in the brown algaSphacelaria furcigera. Botanica Marina27, 45–54.

    Google Scholar 

  • Courtoy, R., Simar, J., 1974: Importance of controls for the demonstration of carbohydrates in electron microscopy with the silver methenamine or the thiocarbohydrazide-silver proteinate methods. J. Microscopy100, 199–211.

    Google Scholar 

  • Dodge, J. D., 1973: The fine structure of algal cells. London-New York: Academic Press.

    Google Scholar 

  • Dromgoole, F. I., 1980: Desiccation resistance of intertidal and subtidal algae. Botanica Marina23, 149–159.

    Google Scholar 

  • Evans, L. V., Holligan, M. S., 1972: Correlated light and electron microscope studies on brown algae. I. Localization of alginic acid and sulphated polysaccharides inDictyota. New Phytol.71, 1161–1172.

    Google Scholar 

  • —,Simpson, M., Callow, M. E., 1973: Sulphated polysaccharide synthesis in brown algae. Planta110, 237–252.

    Google Scholar 

  • Ferron, F., Coudret, A., 1984: Metabolic pathways of photosynthesis in marine algae. Physiol. vég.22, 103–113.

    Google Scholar 

  • Gessner, F., Schramm, W., 1971: Environmental factors. 4. Salinity. In: Marine ecology (Kinne, O., ed.), Vol. I, pp. 705–820. London-New York-Sydney-Toronto: Wiley-Interscience.

    Google Scholar 

  • Jensen, W. A., 1962: Botanical histochemistry. San Francisco-London: Freeman, W. H. & C.

    Google Scholar 

  • Kloareg, B., 1981: Structure et rôle écophysiologique des parois des algues littorales: contribution à la résistance aux variations de salinité. Physiol. vég.19, 427–441.

    Google Scholar 

  • —, 1984: Isolation and analysis of cell walls of the brown marine algaePelvetia canaliculata andAscophyllum nodosum. Physiol. vég.22, 47–56.

    Google Scholar 

  • Lestang de, G., Quillet, M., 1974: Comportement du fucoïdane sulfurylé dePelvetia canaliculata (Dcne & Thur.) vis à vis des cations de la mer: propriétés d'échange, renouvellement des radicaux sulfuriques, coenzyme d'activation des sulfates. Intérêt fonctionnel. Physiol. vég.12, 199–227.

    Google Scholar 

  • Levitt, J., 1980: Responses of plants to environmental stresses (Kozlowski, T. T., ed.). New York-London-Toronto-Sydney-San Francisco: Academic Press.

    Google Scholar 

  • Lignell, A., Roomans, G. M., Pedersén, M., 1982: Localization of absorbed Cadmium inFucus vesiculosus L. by X-ray microanalysis. Z. Pflanzenphysiol.105, 103–109.

    Google Scholar 

  • McCandless, E. L., 1981: Polysaccharides of the seaweeds. In: The Biology of Seaweeds (Lobban, C. S., Wynne, M. J., eds.), pp. 559–588. Oxford-London-Edinburgh-Boston-Melbourne: Blackwell Scientific Publications.

    Google Scholar 

  • McCully, M. E., 1965: A note on the structure of the cell walls of the Brown algaFucus. Can. J. Bot.43, 1001–1004.

    Google Scholar 

  • —, 1966: Histological studies on the genusFucus. I. Light microscopy of the mature vegetative plant. Protoplasma62, 287–305.

    Google Scholar 

  • —, 1968: Histological studies on the genusFucus. III. Fine structure and possible functions of the epidermal cells of the vegetative thallus. J. Cell. Sci.3, 1–16.

    Google Scholar 

  • —, 1970: The histological localization of the structural polysaccharides of seaweeds. Ann. N.Y. Acad. Sci.175, 702–711.

    Google Scholar 

  • Maeda, M., Koshikawa, K., Nisizawa, K., Takano, K., 1966: Cell wall constituents, especially pectic substance of a marine phanerogamZostera marina. Bot. Mag. Tokyo79, 422–426.

    Google Scholar 

  • Mackie, W., Preston, R. D., 1974: Cell wall and intercellular region polysaccharides. In: Algal Physiology and Biochemistry (Stewart, W. D. P., ed.), pp. 40–85. Oxford-London-Edinburgh-Melbourne: Blackwell Scientific Publications.

    Google Scholar 

  • Mariani Colombo, P., Rascio, N., Cinelli, F., 1983:Posidonia oceanica (L.) Delile: A structural study of the photosynthetic apparatus. P. S. Z. N. I.: Marine Ecology4, 133–145.

    Google Scholar 

  • Moon Novotny, A., Forman, M., 1975: The composition and development of cell walls ofFucus embryos. Planta122, 67–78.

    Google Scholar 

  • Oliveira, L., Bisalputra, T., 1973: Studies in the brown algaEctocarpus in culture. I. General ultrastructure of the sporophytic vegetative cells. J. submicr. Cytol.5, 107–120.

    Google Scholar 

  • Parker, B. C., Diboll, A. G., 1966: Alcian stains for histochemical localization of acid and sulfated polysaccharides in algae. Phycologia6, 37–46.

    Google Scholar 

  • Percival, E., 1979: The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. Br. phycol. J.14, 103–117.

    Google Scholar 

  • Reviers, B. (De, Marbeau, S., Kloareg, B., 1983: Essai d'interprétation de la structure des fucoidanes en liaison avec leur localisation dans la paroi des Phéophycées. Cryptogamie Algol.4, 55–62.

    Google Scholar 

  • Ritchie, R. J., Larkum, A. W. D., 1982: Cation exchange properties of the cell walls ofEnteromorpha intestinalis (L.) Link. (Ulvales, Chlorophyta). J. exp. Bot.33, 125–139.

    Google Scholar 

  • Roland, J. C., 1978: General preparation and staining of thin sections. In: Electron Microscopy and Cytochemistry of Plant Cells (Hall, J. L., ed.), pp. 1–62. Amsterdam-Oxford-New York: Elsevier/North Holland Biochemical Press.

    Google Scholar 

  • Schonbeck, M. W., Norton, T. A., 1979: An investigation of drought avoidance in intertidal fucoid algae. Botanica Marina22, 133–144.

    Google Scholar 

  • — —, 1980: The effects on intertidal fucoid algae of exposure to air under various conditions. Botanica Marina23, 141–147.

    Google Scholar 

  • Slocum, R. D., Roux, S. J., 1982: An improved method for the subcellular localization of calcium using a modification of the antimonate precipitation technique. J. Histochem. Cytochem.30, 617–629.

    Google Scholar 

  • Taylor, P. R., Hay, M. E., 1984: Functional morphology of intertidal seaweeds: adaptive significance of aggregate vs. solitary forms. Mar. Ecol. Prog. Ser.18, 295–302.

    Google Scholar 

  • Thiéry, J. P., 1967: Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J. Microscopie6, 987–1018.

    Google Scholar 

  • —,Ovtracht, L., 1981: Chimie ultrastructurale sur molécules isolées d'origine végétale. I. L'alginate. Bull. Soc. bot. Fr., Actual bot.,128, 73–87.

    Google Scholar 

  • Van Stevenink, R. F. M., van Stevenink, M. E., 1978: Ion localization. In: Electron Microscopy and Cytochemistry of Plant Cells (Hall, J. L., ed.), pp. 187–234. Amsterdam-Oxford-New York: Elsevier/North Holland Biochemical Press.

    Google Scholar 

  • Vreeland, V., 1974: A comparative study of brown algal cell walls. J. Phycology10 suppl., 8–9.

    Google Scholar 

  • —,Slomich, M., Laetsch, W. M., 1984: Monoclonal antibodies as molecular probes for cell wall antigens of the brown alga,Fucus. Planta162, 506–517.

    Google Scholar 

  • Vreugdenhil, D., Dijkstra, M. L., Libbenga, K. R., 1976: The ultrastructure of the cell wall of normal and apolar embryos ofFucus vesiculosus. Protoplasma88, 305–313.

    Google Scholar 

  • Wilkinson, H. P., 1979: The plant surface (mainly leaf). In: Anatomy of the Dicotyledons (Metcalfe, C. R., Chalk, L., eds.), Vol. I, pp. 97–165. Oxford: Clarendon Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a M.P.I. grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariani, P., Tolomio, C. & Braghetta, P. An ultrastructural approach to the adaptive role of the cell wall in the intertidal algaFucus virsoides . Protoplasma 128, 208–217 (1985). https://doi.org/10.1007/BF01276343

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01276343

Keywords

Navigation