Skip to main content
Log in

A new model for cellulose architecture in some plant cell walls

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

A new model of rotating fibre components (helicoidal model) is proposed to explain the architecture of some plant cell walls. On the basis of tilting observations under the electron microscope, we establish the validity of this model for the cell wall ofChara vulgaris oospores. We suggest that this model explains the architecture seen in a number of published micrographs from a variety of different plant cell walls. Helicoidal architecture is shown to be distinct from the previously established crossed polylamellate architecture. The diagnostic features of helicoidal architecture are given. Morphogenesis of plant cell walls is discussed, with particular reference to self assembly in cholesteric liquid crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albersheim, P., 1975: The walls of growing plant cells. Scient. Amer.232, 4, 80–95.

    Google Scholar 

  • Altner, H., 1975: The microfiber texture in a specialized plastic cuticle area within a sensillum field on the cockroach maxillary palp as revealed by freeze fracturing. Cell Tiss. Res.165, 79–88.

    Google Scholar 

  • Baynes, S. M., 1972: Light and electron microscope studies on the germination ofChara oospores. B. Sc. Thesis project, Bristol University.

  • Bouligand, Y., 1965: Sur une architecture torsadée répandue dans de nombreuses cuticules d'arthropodes. C. R. Acad. Sci (Paris)261, 3665–3668.

    Google Scholar 

  • Chafe, S. C., 1970: The fine structure of the collenchyma cell wall. Planta90, 12–21.

    Google Scholar 

  • —, 1974: Cell wall structure in the xylem parenchyma ofCryptomeria. Protoplasma81, 63–76.

    PubMed  Google Scholar 

  • —, andA. B. Wardrop, 1972: Fine structural observations on the epidermis. I. The epidermal cell wall. Planta107, 269–278.

    Google Scholar 

  • Cox, G., andB. Juniper, 1973: Electron microscopy of cellulose in entire tissue. J. Microsc.97, 343–355.

    PubMed  Google Scholar 

  • Dalingwater, J. E., 1975: The reality of arthropod cuticular laminae. Cell Tiss. Res.163, 411–413.

    Google Scholar 

  • Dennell, R., 1973: The structure of the cuticle of the shore-crabCarcinus maenas (L.). Zool. J. Linn. Soc.52, 159–163.

    Google Scholar 

  • Drach, P., 1953: Structure des lamelles cuticulaires chez les Crustacés. C. R. Acad. Sci. (Paris)237, 1772–1774.

    Google Scholar 

  • Freund, E., andF. Deutsch, 1940: Spontaneous extension of cellulose acetate films. Rayon Text. Mthly21, 280–283.

    Google Scholar 

  • Friedel, M. G., 1922: Les états mésomorphes de la matière. Ann. Phys.18, 273–474.

    Google Scholar 

  • Gubb, D. C., 1975: A direct visualisation of helicoidal architecture inCarcinus maenas undHalocynthia papillosa by scanning electron microscopy. Tissue and Cell7, 19–32.

    PubMed  Google Scholar 

  • Hills, G. J., J. M. Phillips, M. R. Gay, andK. Roberts, 1975: Self-assembly of a plant cell wallin vitro. J. molec. Biol.96, 431–441.

    PubMed  Google Scholar 

  • Hoffman, L. R., andC. S. Hofmann, 1975: Zoospore formation inCylindrocapsa. Canad. J. Bot.53, 439–451.

    Google Scholar 

  • Jeffries, R., andH. J. Wellard, 1956: The effect of treatment in aqueous phenol solutions of the physical properties of secondary cellulose acetate filaments. J. Text. Inst.47, T 549-T 566.

    Google Scholar 

  • Majury, T. G., and H. J.Wellard, 1955: Extension and crystallization in secondary cellulose acetate. Simposio Internazionale di Chimica Macromolecolare, Supplemento a “La Ricerca Scientifica”, 354–364.

  • Mauguin, M. C., 1911: Sur les cristaux liquides de Lehmann. Bull. Soc. fr. Minér. Crystallogr.34, 71–117.

    Google Scholar 

  • Michell, A. J., andB. Scurfield, 1970: An assessment of infrared spectra as indicators of fungal cell wall composition. Aust. J. biol. Sci.23, 345–360.

    Google Scholar 

  • Mosse, B., 1970: Honey-colored, sessileEndogone spores. III. Wall structure. Arch. Mikrobiol.74, 146–159.

    Google Scholar 

  • Mutvei, H., 1974: SEM studies on arthropod exoskeletons. Part I. Decapod crustaceans,Homarus gammarus andCarcinus maenas. Bull. geol. Instn. Univ. Upsala: N.S.4 (5), 73–80.

    Google Scholar 

  • Neville, A. C., 1975: Biology of the Arthropod cuticle, pp. 1–448. Berlin-Heidelberg-New York: Springer-Verlag.

    Google Scholar 

  • —, andS. C. Caveney, 1969: Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals. Biol. Rev.44, 531–562.

    PubMed  Google Scholar 

  • —, andB. M. Luke, 1971 a: A biological system producing a self-assembling cholesteric protein liquid crystal. J. Cell Sci.8, 93–109.

    PubMed  Google Scholar 

  • — —, 1971 b: Form optical activity in crustacean cuticle. J. Insect Physiol.17, 519–526.

    Google Scholar 

  • Parameswaran, N., 1975: Zur Wandstruktur von Sklereiden in einigen Baumrinden. Protoplasma85, 305–314.

    Google Scholar 

  • Preston, R. D., 1974: The physical biology of plant cell walls, pp. 1–491. London: Chapman and Hall.

    Google Scholar 

  • Probine, M. C., andN. F. Barber, 1966: The structure and plastic properties of the cell wall ofNitella in relation to extension growth. Aust. J. biol. Sci.19, 439–457.

    Google Scholar 

  • Robinson, C., 1966: The cholesteric phase in polypeptide solutions and biological structures. Molecular Crystals1, 467–494.

    Google Scholar 

  • Smith, D. S., W. H. Telfer, andA. C. Neville, 1971: Fine structure of the chorion of a moth,Hyalophora cecropia. Tissue and Cell3, 477–498.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neville, A.C., Gubb, D.C. & Crawford, R.M. A new model for cellulose architecture in some plant cell walls. Protoplasma 90, 307–317 (1976). https://doi.org/10.1007/BF01275682

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01275682

Keywords

Navigation