Skip to main content
Log in

Signal transduction in cavernous smooth muscle

  • Published:
World Journal of Urology Aims and scope Submit manuscript

Summary

Knowledge of intracellular signal propagation in smooth-muscle tone regulation is of major importance to the understanding of both the physiology of erection and the pathophysiology of erectile dysfunction and the development of new and selective pharmacological agents in the treatment of erectile dysfunction. Cavernous smooth-muscle tone depends heavily on the amount of intracellular free Ca2+. In the resting state the sarcoplasmic free Ca2+ amounts to about 120–270 nM, whereas in the extracellular fluid the Ca2+ level is in the range of 1.5–2 mM. Electromechanical and pharmacomechanical coupling induces an increase in the levels of free sarcoplasmic Ca2+ by a factor of 2–3 to 550–700 nM that triggers myosin phosphorylation and subsequent smooth muscle contraction. In this case, modulation of membrane-bound ion channels and regulation of the intracellular second-messenger system are attractive and feasible targets for pharmacological intervention. Besides the amount of free sarcoplasmic Ca2+ smooth muscle tone is also modulated by the regulation of Ca2+ sensitivity (“Ca-sensitization”) and Ca2+-independent contraction processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson KE, Holmquist F (1994) Regulation of tone in penile cavernous smooth muscle. World J Urol 12: 249–261

    PubMed  Google Scholar 

  2. Andersson KE, Wagner G (1995) Physiology of penile erection. Physiol Rev 75: 191–236

    PubMed  Google Scholar 

  3. Ballard S, Burslem FMF, Gingell CJC, Price ME, Tang K, Turner LA, Naylor AM (1996) In vitro profile of UK 92480, an inhibitor of cyclic GMP-specific phosphodiesterase V for the treatment of erectile dysfunction. J Urol 155: 676A

    Google Scholar 

  4. Beavo JA, Conti M, Heaslip RJ (1994) Multiple cyclic nucleotide phosphodiesterases. Mol Pharmacol 46: 399–405

    PubMed  Google Scholar 

  5. Berridge MJ (1984) Inositol triphosphate and diaglycerol as second messengers. Biochem J 220: 345–360

    PubMed  Google Scholar 

  6. Boolell M, Allen MJ, Ballard SA, Gepi-Attee S, Muirhead GJ, Naylor AM, Osterloh IH, Gingell C (1996) Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. IJIR 8: 47–52

    Google Scholar 

  7. Chacko S, Longhurst PA (1994) Regulation of actomyosin and contraction in smooth muscle. World J Urol 12: 292–297

    PubMed  Google Scholar 

  8. Ferris CD, Snyder SH (1992) Inositol 1,4,5 triphosphate-activated calcium channels. Annu Rev Physiol 54: 469–488

    PubMed  Google Scholar 

  9. Gingell CJC, Jardin A, Olsson AM, Dinsmore WW, Osterloh IH, Kirkpatrick J, Cuddigan M (1996) UK-92480, a new oral treatment for erectile dysfunction. J Urol 155: 495A

    Google Scholar 

  10. Himpens B, Kitazawa T, Somlyo AP (1990) Agonist dependent modulation of Ca2+ sensitivity in rabbit pulmonary artery smooth muscle. Pflugers Arch 417: 21–28

    PubMed  Google Scholar 

  11. Höppner CK, Stief CG, Jonas U, Mandrek K, Noack T, Golenhofen K (1996) Electrical and chemical control of smooth muscle activity of rabbit corpus cavernosum in vitro. Urology (in press)

  12. Holmquist F, Hedlund H, Andersson KE (1991)l-N-nitro arginine inhibits non-adrenergic, non-cholinergic relaxation of human isolated corpus cavernosum. Acta Physiol Scand 141: 383–390

    PubMed  Google Scholar 

  13. Holmquist F, Stief CG, Jonas U, Andersson K-E (1991) Effects of the nitric oxide synthase inhibitorN G-nitro-l-arginine on the erectile response to cavernous nerve stimulation in the rabbit. Acta Physiol Scand 143: 299–308

    PubMed  Google Scholar 

  14. Hurwitz L (1986) Pharmacology of calcium channels and smooth muscle. Annu Rev Pharmacol Toxicol 26: 225–258

    PubMed  Google Scholar 

  15. Ignarro JL, Bush PA, Buga GM, Wood KS, Fukoto JM, Raifer J (1990) Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem Biophys Res Commun 170: 843–846

    PubMed  Google Scholar 

  16. Itch H, Lederis K (1987) Contraction of rat thoracic aorta strips induced by phorbol 12-myristate 13-acetate. Am J Physiol 252: C244-C247

    PubMed  Google Scholar 

  17. Lue TF, Tanagho EA (1987) Physiology of erection and pharmacological management of impotence. J Urol 137: 829–835

    PubMed  Google Scholar 

  18. Lue TF, Takamura T, Schmidt RA, Tanagho EA (1983) Hemodynamics of erection in the monkey. J Urol 130: 1237–1241

    PubMed  Google Scholar 

  19. Mandrek K (1994) Electrophysiological methods in smooth muscle physiology. Corpus cavernosum in vitro. World J Urol 12: 262–265

    PubMed  Google Scholar 

  20. Mersdorf A, Goldsmith P, Diederichs W, Padula C, Lue TF, Fishman I, Tanagho EA (1991) Ultrastructural changes in impotent penile tissue. J Urol 145: 749–756

    PubMed  Google Scholar 

  21. Olson NJ, Pearson RB, Needleman DS, Hurwitz MY, Kemp BE, Means AR (1990) Regulatory and structural motifs of chicken gizzard myosin light chain kinase. Proc Natl Acad Sci USA 87: 2284–2288

    PubMed  Google Scholar 

  22. Ruegg JC (1995) Muskel. In: Schmidt-Thewes (ed) Physiologie des Menschen. Springer, Berlin Heidelberg New York, pp 67–87

    Google Scholar 

  23. Somlyo AP, Somlyo AV (1994) Signal transduction and regulation in smooth muscle. Nature 372: 231–236

    PubMed  Google Scholar 

  24. Stief CG, Holmquist F, Allhoff EP, Andersson KE, Jonas U (1991) Preliminary report on the effect of the nitric oxide donor SIN-1 on human cavernous tissue in vivo. World J Urol 9: 237–241

    Google Scholar 

  25. Stief CG, Taher A, Truss M, Ückert S, Meyer M, SchulzKnappe P, Forssmann WF, Jonas U (1995) Die Phosphodiesterase-Isoenzyme des humanen Corpus cavernosum penis und deren funktionelle Bedeutung. Aktuel Urol 26[Suppl 1]: 58–61

    Google Scholar 

  26. Sybertz EJ, Desiderio DM, Tetzloff G, Chui PJS (1986) Phorbol dibutyrate contractions in rabbit aorta. J Pharmacol Exp Ther 239: 78–83

    PubMed  Google Scholar 

  27. Taher A, Stief CG, Raida M, Jonas U, Forssmann WG (1992) Cyclic nucleotide phosphodiesterase activity in human cavernous smooth muscle and the effect of various selective inhibitors. Int J Impotence Res 4 [Suppl 2]: P11

    Google Scholar 

  28. Ückert S, Stief CG, Becker AJ, Truss MC, Thou WF, Jonas U (1994) The effect of the specific phosphodiesterase III-inhibitor Milrinone on human and rabbit erectile tissue in vitro and in vivo. J Urol 151: 495A

    Google Scholar 

  29. Walsh MP (1993) Regulation of vascular smooth muscle. Can J Physiol Pharmacol 72: 919–936

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stief, C.G., Noack, T. & Andersson, KE. Signal transduction in cavernous smooth muscle. World J Urol 15, 27–31 (1997). https://doi.org/10.1007/BF01275153

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01275153

Keywords

Navigation