Skip to main content
Log in

The overall elastopIastic behavior of multiphase materials with isotropic components

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A multiphase material is considered, which consists of a homogeneous elastoplastic matrix containing a homogenous statistically uniform random set of ellipsoidal elastic inclusions. An approach based on the multiparticle effective field method is introduced for determining the overall elastoplastic behavior of the material under monotonic loading. A secant modulus concept is employed, and linearized problems are solved at each step of an iterative procedure. Physically consistent assumptions are used for linearizing nonlinear functions which depend on the phase averages of the second invariant of stress and on the stress deviator. Exact expressions for the second moments of the microstresses are employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Willis, J. R.: The overall elastic response of composite materials. J. Appl. Mech.50, 1202–1209 (1983).

    Google Scholar 

  2. Nemat-Nasser, S., Hori, M.: Micromechanics: overall properties of heterogeneous materials. Amsterdam: North-Holland 1993.

    Google Scholar 

  3. Kreher, W., Pompe, W.: Internal stress in heterogeneous solids. Berlin: Akademie-Verlag 1989.

    Google Scholar 

  4. Buryachenko, V. A., Parton, V. Z.: Effective field method in statics of composites. Prikl. Mekh. i Tekh. Fiz.5, 129–140 (1992) (in Russian; Engl. Transl.: J. Appl. Mech. & Techn. Phys.33, 735–745 (1992)).

    Google Scholar 

  5. Kunin, I. A.: Elastic media with microstructure. Berlin, Heidelberg, New York: Springer 1983.

    Google Scholar 

  6. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids13, 212–222 (1965).

    Google Scholar 

  7. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall.21, 571–574 (1973).

    Google Scholar 

  8. Benveniste, Y.: A new approach to the application of Mori-Tanaka's theory in composite materials. Mech. Mater.6, 147–157 (1987).

    Google Scholar 

  9. Weng, G. J.: The theoretical connection between Mori-Tanaka's theory and the Hashin-Shtrikman-Walpole bounds. Int. J. Eng. Sci.28, 1111–1120 (1990).

    Google Scholar 

  10. Norris, A. N.: An examination of the Mori-Tanaka effective medium approximation for multiphase composites. ASME J. Appl. Mech.56, 83–88 (1989).

    Google Scholar 

  11. Benveniste, Y., Dvorak, G. J., Chen, T.: On the diagonal and elastic symmetry of the approxiamte effective stiffness tensor of heterogeneous media. J. Mech. Phys. Solids39, 927–946 (1991).

    Google Scholar 

  12. Qui, Y. P., Weng, G. J.: On the application of Mori-Tanaka's theory involving transversely isotropic spheroidal inclusions. Int. J. Eng. Sci.28, 1121–1137 (1990).

    Google Scholar 

  13. Buryachenko, V. A., Lipanov, A. M.: Stress concentration at ellipsoidal inclusions and effective thermoelastic properties of composite materials. Prikl. Mekh.11, 105–111 (1986) (in Russian; Engl. Transl.: Soviet Appl. Mech.22, 1103–1109 (1986)).

    Google Scholar 

  14. Buryachenko, V. A.: Correlation function of stress field in matrix composites. Mekhanika Tverdogo Tela3, 69–76 (1987) (in Russian; Engl. Transl.: Mech. Solids22, 66–73 (1987)).

    Google Scholar 

  15. Buryachenko, V. A., Parton, V. Z.: The efficient parameters of statistically nonhomogeneous matrix composites. Mekhanika Tverdogo Tela6, 55–63 (1990) (in Russian; Engl. Transl.: Mech. Solids25, 22–28 (1990)).

    Google Scholar 

  16. Buryachenko, V. A., Murov, V. A.: Effective conductivity of matrix composites. Inzhenerno Fiz. Zhurnal61, 2, 305–312 (1991) (in Russian; Engl. Transl.: J. Eng. Phys.61, 305–312 (1991)).

    Google Scholar 

  17. Buryachenko, V. A.: Effective viscoplasticity parameters of suspensions. Inzhenerno Fiz. Zhurnal58, 3, 452–456 (1990) (in Russian; Engl. Transl.: J. Eng. Phys.58, 331–334 (1990)).

    Google Scholar 

  18. Accorsi, M. L., Nemat-Nasser, S.: Bounds on the overall elastic and instantaneous elastoplastic moduli of periodic composites. Mech. Mater.5, 209–220 (1986).

    Google Scholar 

  19. Dvorak, G. J.: ASME 1992 Nadai lecture-Micromechanics of elastic composite materials: theory and experiment. ASME J. Eng. Mater. Technol.115, 327–338 (1993).

    Google Scholar 

  20. Böhm, H. J., Rammertstorfer, F. G., Weissenbek, E.: Some simple models for micromechanical investigations of fiber arrangement effects in MMCs. Comput. Mater. Sci.1, 177–194 (1993).

    Google Scholar 

  21. Weissenbek, E., Böhm, H. J., Rammerstorfer, F. G.: Micromechanical investigations of arrangement effects in particle reinforced metal matrix composites. Comput. Mater. Sci.3, 263–278 (1994).

    Google Scholar 

  22. Needleman, A., Tvergaard, V.: Comparison of crystal plasticity and isotropic hardening predictions for metal-matrix composites. ASME J. Appl. Mech.60, 70–76 (1993).

    Google Scholar 

  23. Nakamura, T., Suresh, S.: Effect of thermal residual stresses and fiber packing on deformation of metal-matrix composites. Acta Metall. Mater.41, 1665–1681 (1993).

    Google Scholar 

  24. Duva, J. M.: A constitutive description of nonlinear materials containing voids. Mech. Materials5, 137–144 (1986).

    Google Scholar 

  25. Lee, B. J., Mear, M. E.: Effect of inclusion shape on the stiffness of non-linear two-phase composites. J. Mech. Phys. Solids39, 627–649 (1991).

    Google Scholar 

  26. Hutchinson, J. W.: Elastic-plastic behavior of polycrystalline metals and composites. Proc. R. Soc. London Ser.A319, 247–272 (1970).

    Google Scholar 

  27. Nemat-Nasser, S., Obata, M.: Rate-dependent, finite deformation of polycristals. Proc. R. Soc. London Ser.A407, 377–404 (1986).

    Google Scholar 

  28. Hashin, Z.: Analysis of composite materials. ASME J. Appl. Mech.50, 481–505 (1962).

    Google Scholar 

  29. Zhu, Z. G., Weng, G. J.: A local theory for the calculation of overall creep strain of particle-reinforced composites. Int. J. Plasticity6, 449–469 (1990).

    Google Scholar 

  30. Bornert, M., Herve, E., Stolz, C., Zaoui, A.: Self-consistent approaches and strain heterogeneities in two-elastoplastic materials. Appl. Mech. Rev.47, Part 2, S66-S76 (1994).

    Google Scholar 

  31. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the behavior of multiphase materials. J. Mech. Phys. Solids11, 127–140 (1963).

    Google Scholar 

  32. Talbot, D. R. S., Willis, J. R.: Variational principles for nonlinear inhomogeneous media. IMA J. Appl. Math.35, 39–54 (1985).

    Google Scholar 

  33. Willis, J. R., Taldom, G. J.: Variational methods in the theory of random composite materials. In: Continuum models and discrete systems (Maugin, G. A., ed.),1, pp. 113–131. London: Longman Scientific & Technical 1992.

    Google Scholar 

  34. Michel, J. C., Suquet, P.: The constitutive law of nonlinear viscous and porous materials. J. Mech. Phys. Solids40, 783–812 (1992).

    Google Scholar 

  35. Ponte Castañeda, P.: The effective mechanical properties of nonlinear isotropic composites. J. Mech. Phys. Solids39, 45–71 (1991).

    Google Scholar 

  36. Ponte Castañeda, P.: New variational principles in plasticity and their application to composite materials. J. Mech. Phys. Solids40, 1757–1788 (1992).

    Google Scholar 

  37. Berveiller, M., Zaoui, A.: An extension of the self-consistent scheme to plastically flowing polycristals. J. Mech. Phys. Solids26, 325–344 (1979).

    Google Scholar 

  38. Tandon, G. P., Weng, G. J.: A theory of particle-reinforced plasticity. ASME J. Appl. Mech.55, 126–135 (1988).

    Google Scholar 

  39. Buryachenko, V. A., Lipanov, A. M.: Effective characteristics of elastic physically nonlinear composites. Prikl. Mekh.26, 12–16 (1990) (in Russian; Engl. Transl.: Soviet Appl. Mech.26, 9–13 (1990)).

    Google Scholar 

  40. Arsenault, R. J., Taya, M.: Thermal residual stress in metal matrix composites. Acta Metall.35, 651–659 (1987).

    Google Scholar 

  41. Reifsnider, K. L., Gao, Z.: A micromechanics model for composites under fatigue loading. Int. J. Fatigue13, 149–156 (1991).

    Google Scholar 

  42. Lin, S. C., Yang, C., Mura, T., Iwakuma, T.: Average elastic-plastic behavior of composite materials. Int. J. Solids Struct. George Herrmann 70th Anniversary Issue28, 1859–1872 (1992).

    Google Scholar 

  43. Qui, Y. P., Weng, G. J.: The influence of inclusion shape on the overall elastoplastic behavior of a two-phase isotropic composite. Int. J. Solids Struct.27, 1537–1550 (1991).

    Google Scholar 

  44. Zhu, Z. G., Weng, G. J.: Creep deformation of particle-strengthened metal-matrix composites. ASME J. Eng. Mater. Technol.111, 99–105 (1989).

    Google Scholar 

  45. Ziegler, F.: Developments in structural dynamic viscoplaticity including ductile damage. ZAMM72, T5-T15 (1992).

    Google Scholar 

  46. Parton, V. Z., Buryachenko, V. A.: A stress fluctuation in elastic composites. Dok. AN SSSR310, 1075–1078 (1990) (in Russian; Engl. Transl.: Sov. Phys. Dokl.35, 191–193 (1990)).

    Google Scholar 

  47. Buryachenko, V. A.: Mechanics of random structure composites. In: Proc. of the Int. Conf. on Composites (Miravete, A., ed.), Vol.3, pp. 398–405. Zaragoza: Univ. Zaragoza 1993.

    Google Scholar 

  48. Buryachenko, V. A.: Effective strength properties of elastic physically nonlinear composites. In: Proc. of the MECAMAT Conf. Micromechanics of Materials (Marigo, J. J., Rousselier, G., eds.), pp. 567–578. Paris: Editions Eryolles 1993.

    Google Scholar 

  49. Buryachenko, V. A., Lipanov, A. M.: Equations of mechanics for gas-saturated porous matrix. Prikl. Mekh. Tekh. Fiz.4, 106–109 (1986) (in Russian; Engl. Transl.: J. Appl. Mech. Techn. Phys.27, 557–581 (1986)).

    Google Scholar 

  50. Buryachenko, V. A., Kreher, W. S.: Internal residual stresses in heterogeneous solids — A statistical theory for particulate composites. J. Mech. Phys. Solids43, 1105–1125 (1995).

    Google Scholar 

  51. Buryachenko, V. A., Parton, V. Z.: One-particle approximation of the effective field method in statics of composites. Mekh. Kompoz. Mater.3, 420–425 (1990) (in Russian; Engl. Transl.: Mech. Compos. Mater.26, 304–309 (1990)).

    Google Scholar 

  52. Ju, J. W., Chen, T. M.: Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities. Acta Mech.103, 103–121 (1994).

    Google Scholar 

  53. Kreger, I. W.: Rheology of monodisperse lattices. Adv. Colloid Interface Sci.3, 111–136 (1972).

    Google Scholar 

  54. Buryachenko, V. A., Lipanov, A. M.: Effective field method in the theory of perfect plasticity of composite materials. Prikl. Mekh. Tekh. Fiz.3, 149–155 (1989) (in Russian; Engl. Transl.: J. Appl. Mech. Techn. Phys.30, 482–487 (1989)).

    Google Scholar 

  55. Ju, J. W., Chen, T. A.: Micromechanics and effective elastoplastic behavior of twophase metal matrix composites. ASME J. Eng. Mater. Technol.116, 310–318 (1994).

    Google Scholar 

  56. Gurson, A. L.: Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media. ASME J. Eng. Mater. Technol.99, 2–15 (1977).

    Google Scholar 

  57. Koplik, J., Needleman, A.: Void growth and coalescence in porous plastic solids. Int. J. Solids Struct.24, 835–853 (1988).

    Google Scholar 

  58. Fotiu, P., Irschik, H., Ziegler, F.: Micromechanical foundations of dynamic plasticity with applications to damaging structures. In: Advances in continuum mechanics (Brüller, O., Mannl, V., Najar, J., eds.), pp. 338–349. Berlin: Springer 1991.

    Google Scholar 

  59. Buryachenko, V. A., Scorbov, Yu. S., Gunin, S. V.: Effective parameters of the strength composites. Probl. Prochnosti12, 47–51 (1991) (in Russian; Engl. Transl.: Strength Mater.23 (1991)).

    Google Scholar 

  60. Buryachenko, V. A.: Prediction of macroproperties of composite medium by the elastoplastic method of effective fields. Probl. Prochnosti11, 72–76 (1990) (in Russian; Engl. Transl.: Strength Mater.22, 1645–1650 (1990)).

    Google Scholar 

  61. Buryachenko, V. A., Lipanov, A. M., Kozhevnikova, Yu. G.: Effective properties of elastoplastic porous materials. Probl. Prochnosti1, 36–39 (1991) (in Russian; Engl. Transl.: Strength Mater.23, 41–45 (1991)).

    Google Scholar 

  62. Qui, Y. P., Weng, G. J.: A theory of plasticity for porous materials and particle-reinforced composites. ASME J. Appl. Mech.59, 261–268 (1992).

    Google Scholar 

  63. Bhattacharyya, A., Weng, G. J.: The elastoplastic behavior of a class of two-phase composites containing rigid inclusions. Appl. Mech. Rev.47, 45–65 (1994).

    Google Scholar 

  64. Buryachenko, V. A., Lipanov, A. M.: Predicting the parameters of a nonlinear flow of multicomponent mixtures. Prikl. Mekh. Tekh. Fiz.4, 63–68 (1989) (in Russian; Engl. Transl.: J. Appl. Mech. Techn. Phys.30, 558–562, (1989)).

    Google Scholar 

  65. Ponte Castañeda, P.: Effective properties in power-law creep. In: Micromechanics of creep of brittle materials (Cocks, A. L. F., Ponter, A. R. S., eds.)2, pp. 218–229. London: Elsevier 1991.

    Google Scholar 

  66. Kremesec, V. J., Slattery, J. C.: The apparent stress-deformation of spheres in power-model fluid. J. Rheol.21, 459–461 (1977).

    Google Scholar 

  67. Bao, G., Hutchinson, J. W., McMeeking, R. M.: Particle reinforcement of ductile matrices against plastic flow and creep. Acta Metall.39, 1871–1880 (1991).

    Google Scholar 

  68. Han, C. D.: Rheological properties of calcium carbonate filled polypropylene melts. J. Appl. Pol. Sci.18, 821–829 (1974).

    Google Scholar 

  69. Buryachenko, V., Böhm, H., Rammerstorfer, F.: Modeling of the overall elastoplastic behavior of multiphase materials by the effective field method. In: IUTAM Symp. on Plasticity and Damage of Multiphase Materials (Pineau, A., Zaoui, A., Pyrz, R., eds.). Dordrecht: Kluwer 1996 (in press).

    Google Scholar 

  70. Buryachenko, V. A., Rammerstorfer, F. G.: Micromechanics of elastoplastic deformation of two-phase metal matrix composites. In: Second Int. Conf. on Composites Engineering (Hui, D., ed.), pp. 617–618. New Orleans: Univ. of New Orleans 1995.

    Google Scholar 

  71. Buryachenko, V. A., Rammerstorfer, F. G.: Elastoplastic behavior of elastically homogeneous materials with a random field of inclusions. In: 8th Int. Symp. on Continuum Models and Discrete Systems, Varna (Markov, K. Z., ed.), pp. 140–147. Singapore: World Scientific 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buryachenko, V.A. The overall elastopIastic behavior of multiphase materials with isotropic components. Acta Mechanica 119, 93–117 (1996). https://doi.org/10.1007/BF01274241

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01274241

Keywords

Navigation