Skip to main content
Log in

Ontogeny of PFC-related behaviours is sensitive to a single non-invasive dose of methamphetamine in neonatal gerbils (Meriones unguiculatus)

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

A single dose of methamphetamine (50mg/kg; i.p.) was administered to neonatal male gerbils (Meriones unguiculatus) aged 14 days, and adult prefrontal cortex (PFC)-related behaviours were analysed and compared with saline-treated controls at the age of postnatal day 90. For that purpose, animals were tested for open-field activities and y-maze delayed alternation. This solitary and non-invasive drug challenge, which has recently been found to initiate serious restraint in maturation of the mesoprefrontal dopamine (DA)-system (Dawirs et al., 1994), induces a significant delayed alternation impairment as well as significant increases in open-field motor activity and emotionality. Since an undisturbed development of the prefrontal DA-innervation seems to be a precondition for the maturation of normal PFC-related behaviours, a single early methamphetamine impact may be a suitable animal model for further investigation of structural and functional aspects of non-invasively induced behavioural deficits in rodents. The present results are discussed with regard to the assumption that hypofunctional mesoprefrontal DA-systems might be basic to schizophrenic behaviours in man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertolucci-D'Angio M, Serrano A, Driscoll P, Scatton B (1990) Involvement of mesocorticolimbic dopaminergic systems in emotional states. Prog Brain Res 85: 405–417

    PubMed  Google Scholar 

  • Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficits caused by regional depletion of dopamine in the prefrontal cortex of rhesus monkey. Science 205: 929–932

    PubMed  Google Scholar 

  • Braun AR, Jaskiw GE, Vladar K, Sexton RH, Kolachana BS, Weinberger DR (1993) Effects of ibotenic acid lesion of the medial prefrontal cortex on dopamine agonist-related behaviors in the rat. Pharmacol Biochem Behav 46: 51–60

    PubMed  Google Scholar 

  • Bubser M, Schmidt WJ (1990) 6-Hydroxydopamine lesion of the rat prefrontal cortex increases locomotor activity, impairs acquisition of delayed alternation tasks, but does not affect uninterupted tasks in the radial maze. Behav Brain Res 37: 157–168

    PubMed  Google Scholar 

  • Bubser M, Keseberg U, Notz PK, Schmidt WJ (1992) Differential behavioral and neurochemical effects of competitive and non-competitive NMDA receptor antagonists in rats. Eur J Pharmacol 229: 75–82

    PubMed  Google Scholar 

  • Butter CM, Snyder DR (1972) Alterations in aversive and aggressive behaviors following orbital frontal lesions in rhesus monkeys. Acta Neurobiol Exp 32: 525–565

    Google Scholar 

  • Carter CJ, Pycock CJ (1980) Behavioral and biochemical effects of dopamine and noradrenaline depletion within the medial prefrontal cortex of the rat. Brain Res 192: 163–175

    PubMed  Google Scholar 

  • Carter CS, Freeman JH, Stanton ME (1995) Neonatal medial prefrontal lesions and recovery of spatial delayed alternation in the rat: effects of delay interval. Dev Psychobiol 28: 269–279

    PubMed  Google Scholar 

  • Crawley JN, Evers JR, Paul SM (1992) Polyamines inhibit N-methyl-D-aspartate antagonist-induced darting behavior in the rat prefrontal cortex. Brain Res 586: 6–11

    PubMed  Google Scholar 

  • Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148: 1474–1486

    PubMed  Google Scholar 

  • Dawirs RR, Teuchert-Noodt G, Busse M (1991) Single doses of methamphetamine cause changes in the density of dendritic spines in the prefrontal cortex of gerbils (Meriones unguiculatus). Neuropharmacol 30: 275–282

    Google Scholar 

  • Dawirs RR, Teuchert-Noodt G, Molthagen M (1993a) Indication of methamphetamine-induced reactive synaptogenesis in the prefrontal cortex of gerbils (Meriones unguiculatus). Eur J Pharmacol 421: 89–97

    Google Scholar 

  • Dawirs RR, Teuchert-Noodt G, Czaniera R (1993b) Maturation of the dopamine innervation during postnatal development of the prefrontal cortex in gerbils (Meriones unguiculatus). A quantitative immunocytochemical study. J Hirnforsch 34: 281–290

    PubMed  Google Scholar 

  • Dawirs RR, Teuchert-Noodt G, Czaniera R (1994) The postnatal maturation of dopamine innervation in the prefrontal cortex of gerbils (Meriones unguiculatus) is sensitive to an early single dose of methamphetamine. A quantitative immunocytochemical study. J Brain Res 35: 195–204

    Google Scholar 

  • Dawirs RR, Teuchert-Noodt G, Nossoll M (1995) A single pharmacological impact induces remodelling of neuronal circuits in the prefrontal cortex of adult gerbils (Meriones unguiculatus). Proceedings, 23rd Göttingen Neurobiology Conference, p 832

  • De Brabander JM, Van Eden CG, De Bruin JP, Feenstra MG (1992) Activation of mesocortical dopaminergic system in the rat in response to neonatal medial prefrontal cortex lesions. Concurrence with functional sparing. Brain Res 581: 1–9

    PubMed  Google Scholar 

  • De Brabander JM, De Bruin JP, Van Eden CG (1993) Ineffectiveness of GM1 and ORG2766 on behavioral recovery after prefrontal cortical lesions in adult rats. Pharmacol Biochem Behav 44: 565–572

    PubMed  Google Scholar 

  • De Bruin JPC, Van Oyen HGM, Van de Poll NE (1983) Behavioral changes following lesions of the orbital prefrontal cortex in male rats. Behav Brain Res 10: 209–232

    PubMed  Google Scholar 

  • Diamond A, Ciaramitaro V, Donner E, Djali S, Robinson MB (1994) An animal model of early-treated PKU. J Neurosci 14: 3072–3082

    PubMed  Google Scholar 

  • Eastwood SL, Burnet PW, Harrison PJ (1994) Striatal synaptophysin expression and haloperidol-induced synaptic plasticity. Neuroreport 5: 677–680

    PubMed  Google Scholar 

  • Ferron A, Thierry AM, Le Douarin C, Glowinski J (1984) Inhibitory influences of the mesocortical dopaminergic system on spontaneous activity or excitatory responses induced from the thalamic mediodorsal nucleus in the rat medial prefrontal cortex. Brain Res 302: 257–265

    PubMed  Google Scholar 

  • Freeman JH, Stanton ME (1992) Medial prefrontal cortex lesions and spatial delayed alternation in the developing rat: recovery or sparing? Behav Neurosci 106: 924–932

    PubMed  Google Scholar 

  • Funahashi S, Kubota K (1994) Working memory and prefrontal cortex. Neurosci Res 21: 1–11

    PubMed  Google Scholar 

  • Fuster JM (1989) The prefrontal cortex, 2nd edn. Raven Press, New York, p 255

    Google Scholar 

  • Fuster JM (1991) The prefrontal cortex and its relation to behavior. Prog Brain Res 87: 201–211

    PubMed  Google Scholar 

  • Geyer MA, Russo PV, Segal DS, Kuczenski R (1987) Effects of apomorphine and amphetamine on patterns of locomotion and investigatory behavior in rats. Pharmacol Biochem Behav 28: 393–399

    PubMed  Google Scholar 

  • Goldman PS (1976) Maturation of the mammalian nervous system and ontogeny of behavior. In: Rosenblatt JS, Huide RA, Shaw E, Beer C (eds) Advances of the study of behavior, vol 7. Academic Press, New York, pp 1–90

    Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Blum F (ed) Handbook of physiology, vol V. The nervous system: higher functions of the brain. American Physiological Society, Bethesda MD, pp 373–417

    Google Scholar 

  • Granon S, Poucet B (1995) Medial prefrontal lesions in the rat and spatial navigation: evidence for impaired planning. Behav Neurosci 109: 474–484

    PubMed  Google Scholar 

  • Granon S, Vidal C, Thinus-Blanc C, Changeux JP, Poucet B (1994) Working memory, response selection, and effortful processing in rats with prefrontal lesions. Behav Neurosci 108: 883–891

    PubMed  Google Scholar 

  • Granon S, Poucet B, Thinus-Blanc C, Changeux JP, Vidal C (1995) Nicotinic and muscarinic receptors in the rat prefrontal cortex: differential roles in working memory, response selection and effortful processing. Psychopharmacol Berl 119: 139–144

    Google Scholar 

  • Kalsbeek A, De Bruin JP, Matthijssen MA, Uylings HB (1989a) Ontogeny of open field activity in rats after neonatal lesioning of the mesocortical dopaminergic projection. Behav Brain Res 32: 115–127

    PubMed  Google Scholar 

  • Kalsbeek A, Matthijssen MA, Uylings HB (1989b) Morphometric analysis of prefrontal cortical development following neonatal lesioning of the dopaminergic mesocortical projection. Exp Brain Res 78: 279–289

    PubMed  Google Scholar 

  • Kalsbeek A, De Bruin JP, Feenstra MGP, Uylings HB (1990) Age-dependent effects of lesioning of the mesocortical dopamine system upon prefrontal cortec morphometry and PFC-related behaviors. Prog Brain Res 85: 257–283

    PubMed  Google Scholar 

  • Kennard MA (1938) Reorganisation of motor function in the cerebral cortex of monkeys deprived of motor and premotor areas in infancy. J Neurophysiol 1: 477–497

    Google Scholar 

  • Kessler J, Markowitsch HJ (1981) Delayed alternation performance after kainic acid lesions of the thalamic mediodorsal nucleus and the ventral tegmental area in the rat. Behav Brain Res 3: 125–130

    PubMed  Google Scholar 

  • Kolb B (1984) Functions of the frontal cortex of the rat: a comparative review. Brain Res Rev 8: 65–98

    Google Scholar 

  • Kolb B, Nonneman AJ (1978) Sparing of function in rats with early prefrontal cortex lesions. Brain Res 151: 135–148

    PubMed  Google Scholar 

  • Kolb B, Whishaw IQ (1989) Plasticity in the neocortex: mechanisms underlying recovery from early brain damage. Progr Neurobiol 32: 235–276

    PubMed  Google Scholar 

  • Lewis DA, Hayes TL, Lund JS, Oeth KM (1992) Dopamine and the neural circuitry of primate prefrontal cortex: implications for schizophrenia research. Neuropsychopharmacol 6: 127–134

    Google Scholar 

  • Louilot A, Le Moal M, Simon H (1989) Opposite influence of dopaminergic pathways to the prefrontal cortex or the septum on the dopaminergic transmission in the nucleus accumbens. An in vivo voltametric study. Neurosci 29: 45–56

    Google Scholar 

  • Mogensen J, Jorgensen OS, Divac I (1982) Synaptic proteins in frontal and control brain regions of rats after exposure to spatial problems. Behav Brain Res 5: 375–386

    PubMed  Google Scholar 

  • Mora F, Sweeney KF, Rolls ET, Sanguinetti AM (1976) Spontaneous firing rates of neurons in the prefrontal cortex of the rat: evidence for a dopaminergic inhibition. Brain Res 116: 516–522

    PubMed  Google Scholar 

  • Nonneman AJ, Corwin JV (1981) Differential effects of prefrontal cortex ablation in neonatal, juvenile, and young adult rats. J Comp Physiol 95: 588–602

    Google Scholar 

  • Park S, Holzman PS (1992) Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 49: 975–982

    PubMed  Google Scholar 

  • Park S, Holzman PS (1993) Association of working memory deficit and eye tracking dysfunction in schizophrenia. Schizophr Res 11: 55–61

    PubMed  Google Scholar 

  • Pycock CJ, Kerwin RW, Carter CJ (1980) Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature 286: 74–77

    PubMed  Google Scholar 

  • Roa ML, Möller HJ (1994) Biochemical findings of negative symptoms in schizophrenia and their putative relevance to pharmacologic treatment. A review. Neuropsychobiol 30: 160–172

    Google Scholar 

  • Sachs L (1974) Angewandte Statistik. Springer, Berlin Heidelberg New York, p 545

    Google Scholar 

  • Simon H, Scatton B, Le Moal M (1980) Dopaminergic A10 neurons are involved in cognitive functions. Nature (London) 286: 150–151

    Google Scholar 

  • Simon H, Taghzouti K, Gozlan H, Studler JM, Louilot A, Herve D, Glowinski J, Tassin JP, Le Moal M (1988) Lesion of dopaminergic terminals in the amygdala produces enhanced locomotor responses to d-amphetamine and opposite changes in dopaminergic activity in prefrontal cortex and nucleus accumbens. Brain Res 447: 335–340

    PubMed  Google Scholar 

  • Sokolowski JD, Salamone JD (1994) Effects of dopamine depletions in the medial prefrontal cortex on DRL performance and motor activity in the rat. Brain Res 642: 20–28

    PubMed  Google Scholar 

  • Spitzer M (1993) The psychopathology, neuropsychology, and neurobiology of associative and working memory in schizophrenia. Eur Arch Psychiatry Clin Neurosci 243: 57–70

    PubMed  Google Scholar 

  • Stam CJ, De Bruin JPC, Van Haelst AM, Von der Gugten J, Kalsbeek A (1989) Influence of the mesocortical dopamine system on activity, food hoarding, social agonistic behavior, and spatial delayed alternation in male rats. Behav Neurosci 103: 24–35

    PubMed  Google Scholar 

  • Taghzouti K, Simon H, Herve D, Blanc G, Studler JM, Glowinski J, Le Moal M, Tassin JP (1988) Behavioral deficits induced by an electrolytic lesion of the rat ventral mesencephalic tegmentum are corrected by a superimposed lesion of the dorsal noradrenergic system. Brain Res 440: 172–176

    PubMed  Google Scholar 

  • Tassin JP, Stinus L, Simon H, Blanc G, Thierry AM, Le Moal M, Carbo B, Glowinski J (1978) Relationship between the locomotor hyperactivity induced by A10 lesions and the destruction of the fronto-cortical dopaminergic innervation in the rat. Brain Res 141: 267–281

    PubMed  Google Scholar 

  • Teuchert-Noodt G, Dawirs RR (1991) Age-related toxicity in the prefrontal cortex and caudate-putamen complex of gerbils (Meriones unguiculatus) after a single dose of methamphetamine. Neuropharmacol 30: 733–743

    Google Scholar 

  • Thierry AM, Godbout R, Mantz J, Glowinski J (1990) Influence of the ascending monoaminergic systems on the activity of the rat prefrontal cortex. Prog Brain Res 85: 357–365

    PubMed  Google Scholar 

  • Van Haaren F, De Bruin JPC, Heinsbroek RPW, Van de Poll NE (1985) Delayed spatial response alternation: effect of delay-interval duration and lesions of the medial prefrontal cortex on response accuracy of male and female Wistar rats. Behav Brain Res 18: 41–49

    PubMed  Google Scholar 

  • Verin M, Partiot A, Pillon B, Malapani C, Agid Y, Dubois B (1993) Delayed response tasks and prefrontal lesions in man: evidence for self generated patterns of behavior with poor environmental modulation. Neuropsychologia 31: 1379–1396

    PubMed  Google Scholar 

  • Vicedomini JP, Corwin JV, Nonneman AJ (1982) Role of residual anterior neocortex in recovery from neonatal prefrontal lesions in the rat. Physiol Behav 28: 797–806

    PubMed  Google Scholar 

  • Vicedomini JP, Isaac WL, Nonneman AJ (1984) Role of the caudate nucleus in recovery from neonatal mediofrontal cortex lesions in the rat. Dev Psychobiol 17: 51–65

    PubMed  Google Scholar 

  • Vincent SL, Adamec E, Sorensen I, Benes FM (1994) The effect of chronic haloperidol administration on GABA-immunoreactive axon terminals in rat medial prefrontal cortex. Synapse 17: 26–35

    PubMed  Google Scholar 

  • Weinstock M, Matlina E, Maor GI, Rosen H, McEwen BS (1992) Prenatal stress selectively alters the reactivity of the hypothalamic-pituitary adrenal system in the female rat. Brain Res 595: 195–200

    PubMed  Google Scholar 

  • Yamazaki N, Nomura M, Nagaoka A, Nagawa Y (1989) Idebenone improves learning and memory impairment induced by cholinergic or serotonergic dysfunction in rats. Arch Geront Geriat 8: 225–239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawirs, R.R., Teuchert-Noodt, G. & Czaniera, R. Ontogeny of PFC-related behaviours is sensitive to a single non-invasive dose of methamphetamine in neonatal gerbils (Meriones unguiculatus). J. Neural Transmission 103, 1235–1245 (1996). https://doi.org/10.1007/BF01271184

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01271184

Keywords

Navigation