Skip to main content
Log in

Forced convective mass transfer from circular disks

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Overall forced convective mass transfer rates were measured from naphthalene circular disks of two inches diameter suspended in an air stream. The data consisting of fifty two experiments were correlated with following expression with a standard deviation of 2.0%, Sh=0.266 (Re)0.60 (Sc)1/3 for the range of 270< Re< 34900.-Data obtained for mass transfer from frontal areas of disks were correlated with a standard deviation of 2.63% by following relationship. Sh=0.67 (Re)0.54 (Re)1/3 for the range of 250< Re< 34800.

Zusammenfassung

Die Gesamtbeträge der Stoffübertragung bei Zwangskonvektion wurden an einer Naphthalinscheibe von 50 mm Durchmesser gemessen, die in einem Luftstrom aufgehängt war. Die in 52 Versuchen gewonnenen Meßdaten wurden durch den folgenden Ausdruck mit einer Standardabweichung von 2% korreliert. Sh=0,266 (Re)0,60(Sc)1/3, gültig für 270< Re< 34 900. — Die Versuchsergebnisse für den Stoffübergang von den Stirnseiten der Scheibe konnten durch folgenden Ausdruck Sh=0,67(Re)0,54(Re)1/3, gültig für 250 < Re < 34 800 mit einer Standardabweichung von 2,63%, korreliert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

Constant in Eq. (3)

B:

Constant in Eq. (3)

kc :

Continuous phase mass transfer coefficient (cm/hr)

N:

Overall mass transfer rates (gm · mole/hr)

P* :

Equilibrium vapour pressure of naphthalene (mm · Hg)

p0 :

Vapour pressure of naphthalene in air stream of wind tunnel (mm · Hg)

q:

Number of observations

R:

Gas constant, 62.368 x 103 (cm3) (mm · Hg)/(°k) (gm · moles)

Re =ud/ν:

Reynolds number

S:

Surface area (cm2)

S2 (Y):

Estimate of variance, bases on the deviations of data points from their predicted values

Sc =ν/Dv :

Schmidt number

Sh=kcd/Dv :

Sherwood number

T:

Absolute temperature (°K)

U:

Velocity of air in the wind tunnel. (cm/sec.)

σ2 :

True variance calculated with infinite degree of freedom

References

  1. Frossling, N.: Gerlands Beitr. Geophys. 52 (1938) 170.

    Google Scholar 

  2. Aksel'Rud, G. A.: Zh. Fiz. Khim. 27 (1953) 1445.

    Google Scholar 

  3. Garner, F. H., Grafton, R. W.: Proc. Roy. Soc. A 224 (1964) 64.

    Google Scholar 

  4. Garner, F. H., Keeys, R. B.: Chem. Eng. Sci. 9 (1958) 218.

    Google Scholar 

  5. Garner, F. H., Suckling, R. D.: A. I. Ch. E. Journal 4 (1958) 114.

    Google Scholar 

  6. Garner, F. H., Hoffmann, J. M.: A. I. Ch. E. Journal 6 (1960) 579.

    Google Scholar 

  7. Garner, F. H., Hoffmann, J. M.: A. I. Ch. E. Journal 7 (1961) 148.

    Google Scholar 

  8. Grafton, R. W.: Chem. Eng. Sci: 18 (1963) 457.

    Google Scholar 

  9. Evnochides, S., Thodos, G.: A. I. Ch. E. Journal, 1 (1961) 214.

    Google Scholar 

  10. Rowe, P. N., Claxton, K. T., Lewis, J. B.: Tran. Inst. Chem. Engrs. (London) 43 (1965) 29.

    Google Scholar 

  11. Lenard, P.: Uber Regen Meteor. Z. 21 (1-04) 248.

  12. Egerton, H. E., Hauser, E. A., Holt, B. M., Cox, J. F.: Journal Phys. Chem.: 40 (1936) 973.

    Google Scholar 

  13. Spielhaus, A. F., Journal Meteor. 5 (1948) 108.

    Google Scholar 

  14. Hughes, R. R., Gilliland, E. R.: Chem. Eng. Prog. 48 (1952) 497.

    Google Scholar 

  15. Henrickson, F. Jr.: M.S. Thesis in Chem. Eng., MIT, (1941).

  16. Law, J. O.: Agric. Eng. 21 (1940) 709.

    Google Scholar 

  17. Magono, C.: J. Meteor. 11 (1954) 77.

    Google Scholar 

  18. Klee, A. J., Treybal, R. E.: A. I. Ch. E. Journal 2 (1956) 444.

    Google Scholar 

  19. Keith, F. W. Jr., Hixson, A. N.: A. I. Ch. E. Journal 1 (1955) 42.

    Google Scholar 

  20. Saito, S.: Sci. Rep. Tohoku Imp. Univ.: 2 (1913) 170.

    Google Scholar 

  21. Garner, F. H.: Trans. Inst. Chem. Engrs. (London) 28 (1950) 95.

    Google Scholar 

  22. Garner, F. H., Ellis, S. R. M., Fosbury, D. M.: Trans. Inst. Chem. Engrs. (London) 31 (1933) 348.

    Google Scholar 

  23. Licht, W., Mhamurty, G. S. R.: A. I. Ch. E. Journal 1 (1955) 366.

    Google Scholar 

  24. Elzinga, E. R., Banchero, J. T.: A. I. Ch. E. Journal 7 (1961) 394.

    Google Scholar 

  25. Pasternak, I. S., Gauvin, W. H.: Can. Journal of Chem. Eng. 38 (1960) 35.

    Google Scholar 

  26. Skelland, A. H. P., Cornish, A. R. H.: A. I. Ch. E. Journal 9 (1963) 73.

    Google Scholar 

  27. Beg, S. A.: Ph. D. Thesis in Chem. Eng., University of London (1966).

  28. Goldstein, S.: Modern Developments in Fluid Dynamics. Oxford University Press London (1938) 493.

    Google Scholar 

  29. Perry, J. H.: Chemical Engineering Hand Book, 3rd Edition McGraw-Hill Book Company Inc. New York (1950) 370.

    Google Scholar 

  30. Gilliland, E. R.: Ind. Eng. Chem. 26 (1934) 68.

    Google Scholar 

  31. Gildenblat, S., Furmanov, A. S., Zhavoronkov, N. M.: Journal of Applied Chemistry, U.S.S.E.: 33 (1960) 246.

    Google Scholar 

  32. Davidon, W. C.: A.N.L. Report No. 5990 Nov (1959).

  33. Comings, E. W., Clapp, J. T., Taylor, J. F.: Ind. Eng. Chem. 40 (1948) 1076.

    Google Scholar 

  34. Maisei, D. S., Sherwood, T. K.: Chem. Eng. Progr. 46 (1950) 131, 175.

    Google Scholar 

  35. Brown, R. A. S., Sato, K., Sage, B. H.: Chem. Eng. Data, Sci. 3 (1958) 263.

    Google Scholar 

  36. Giedt, W. H.: J. Aero. Sci. 18 (1951) 725.

    Google Scholar 

  37. Giedt, W. H.: Tran. Am. Soc. Mech. Engrs. 71 (1949) 375.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beg, S.A. Forced convective mass transfer from circular disks. Wärme- und Stoffübertragung 6, 45–51 (1973). https://doi.org/10.1007/BF01270704

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01270704

Keywords

Navigation