Skip to main content
Log in

On the geometric origin of Orowan-type kinematic relations and the Schmid yield criterion

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

It is shown that the Orowan-type kinematic relations as well as the Schmid yield criterion can be derived basing oneself on a formula defining the mean curvature of glide surfaces for a principal congruence of edge dislocation lines accompanied with a particular distribution of secondary point defects. Moreover, it appears that this mean curvature has the physical meaning of a mesoscopic material parameter defining a relation between the evolution of the dislocation state and plastic deformation. It is pointed out that the existence of Orowan-type relations puts kinematic constraints, dependent on the isometry group of glide surfaces, on the dislocation density tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frank, F. C., Steeds, J. W.: Crystal dislocations. In: The physics of metals 2. Defects (Hirsch, P. B. ed.), pp. 43–97. London: Cambridge University Press 1975.

    Google Scholar 

  2. Hull, D., Bacon, D. J.: Introduction to dislocations. Oxford: Pergamon Press 1984.

    Google Scholar 

  3. Fridman, J. B.: Mechanical properties of metals, vol. I Moscow: “Maszinostroenie” 1974 (in Russian).

    Google Scholar 

  4. Eisenhart, L. P.: Riemannian geometry. Princeton: Princeton University Press 1964.

    Google Scholar 

  5. Orlov, A. N.: Introduction to the theory of defects in crystals. Moscow: “Vyscaja skola” 1983 (in Russian).

    Google Scholar 

  6. Bilby, B. A., Bullough, R., Garder, L. R., Smith, E.: Continuous distributions of dislocations. IV Single glide and plane strain. Proc. Roy. Soc.244, 538–557 (1958).

    Google Scholar 

  7. Christian, J. W.: Transformation in metals and alloys, Part I. Oxford: Pergamon Press 1975.

    Google Scholar 

  8. Yang, W., Lee, W. B.: Mesoplasticity and its applications. Berlin: Springer 1993.

    Google Scholar 

  9. Kondo, K.: Non-Riemannian geometry of imperfected crystals from a macroscopic viewpoint. RAAG Memoirs1, 6–17 (1955).

    Google Scholar 

  10. Kröner, E.: The continuized crystal — a bridge between micro- and macromechanics? ZAMM66, T284-T292 (1986).

    Google Scholar 

  11. Kröner, E.: The differential geometry of elementary point and line defects in Bravais Crystals. Int. J. Theor. Phys.29, 1219–1237 (1990).

    Article  MATH  Google Scholar 

  12. Trzęsowski, A.: Geometrical and physical gauging in the theory of dislocations. Rep. Math. Phys.32, 71–98 (1993).

    Article  MathSciNet  Google Scholar 

  13. Trzęsowski, A.: Dislocations and internal length measurement in continuized crystals, Part I and II. Int. J. Theor. Phys.33, 931–966 (1994).

    Article  Google Scholar 

  14. Kadić, A., Edelen, D. G. B.: A gauge theory of dislocations and disclinations. Berlin: Springer 1983.

    Google Scholar 

  15. Turski, Ł.: Variational principle for equilibrium and incompatibility equations in dislocation theory. Bull. Acad. Polon. Sci., Serie Sci. Techn.XXVII, 289–294 (1966).

    Google Scholar 

  16. Trzęsowski, A.: On the geometry of diffusion processes in continuized dislocated crystals. Fortschr. Phys.43, 565–584 (1995).

    MathSciNet  Google Scholar 

  17. Oding, I. A.: The theory of dislocations in metals. Warsaw: PWT 1961, (in Polish).

    Google Scholar 

  18. Trzęsowski, A.: Kinematics of edge dislocations, Part I and II. Int. J. Theor. Phys.36, 2877–2911 (1997).

    Google Scholar 

  19. Friedman, A.: Isometric embedding of Riemannian manifolds into Euclidean space. Rev. Mod. Phys.37, 201–203 (1965).

    Article  MATH  Google Scholar 

  20. Trzęsowski, A.: On the isotropy of continuized dislocated crystals, Part I and II. Int. J. Theor. Phys.36, 177–208 (1997).

    Google Scholar 

  21. Schouten, J. A.: Ricci-calculus. Berlin: Springer 1954.

    Google Scholar 

  22. Sikorski, R.: Introduction to differential geometry. Warsaw: PWN 1972 (in Polish).

    Google Scholar 

  23. Von Westenholz, C.: Differential forms in mathematical physics. Amsterdam: North-Holland 1972.

    Google Scholar 

  24. Hicks, N. J.: Notes on differential geometry. Toronto: Van Nostrand 1965.

    Google Scholar 

  25. Trzęsowski, A.: Geometry of crystal structure with defects, Part. I. Int. J. Theor. Phys.26 311–333 (1987).

    Article  Google Scholar 

  26. Perzyna, P.: Thermodynamics of inelastic materials. Warsaw: PWN 1978, (in Polish).

    Google Scholar 

  27. Gairola, B. K. D.: Gauge theory of dislocations. In: Continuum models of discrete systems, Proceedings of CMDS-7, (Anthony, K.-H., Wagner, H.-J., eds.), pp. 579–590. Switzerland: Trans Tech Publications 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trzęsowski, A. On the geometric origin of Orowan-type kinematic relations and the Schmid yield criterion. Acta Mechanica 141, 173–192 (2000). https://doi.org/10.1007/BF01268676

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01268676

Keywords

Navigation