Skip to main content
Log in

Voyager energetic particle observations at interplanetary shocks and upstream of planetary bow shocks: 1977–1990

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Voyager 1 and 2 spacecraft include instrumentation that makes comprehensive ion (E ≳ 28 keV) and electron (E ≳ 22 keV) measurements in several energy channels with good temporal, energy, and compositional resolution. Data collected over the past decade (1977–1988), including observations upstream and downstream of four planetary bow shocks (Earth, Jupiter, Saturn, Uranus) and numerous interplanetary shocks to ∼ 30 AU, are reviewed and analyzed in the context of the Fermi and shock drift acceleration (SDA) models. Principal findings upstream of planetary bow shocks include the simultaneous presence of ions and electrons, detection of “tracer” ions characteristic of the parent magnetosphere (O, S, O+), power-law energy spectra extending to ≳ 5 MeV, and large (up to 100:1) anisotropies. Results from interplanetary shocks include observation of acceleration to the highest energies ever seen in a shock (≳ 22 MeV for protons, ≳ 220 MeV for oxygen), the “saturation” in energy gain to ≳ 300 keV at quasi-parallel shocks, the observation of shock-accelerated relativistic electrons, and separation of high-energy (upstream) from low-energy (downstream) populations to within ∼ 1 particle gyroradius in a near-perpendicular shock. The overall results suggest that ions and electrons observed upstream of planetary bow shocks have their source inside the parent magnetosphere, with first order Fermi acceleration playing a secondary role at best. Further, that quasi-perpendicular interplanetary shocks accelerate ions and electrons most efficiently to high energies through the shock-drift process. These findings suggest that great care must be exercised in the application of concepts developed for heliosphere shocks to cosmic ray acceleration through shocks at supernova remnants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anagnostopoulos, G., E. T. Sarris, and S. M. Krimigis (1986), Magnetospheric origin of energetic upstream ions (E ≥ 50 keV): the October 31, 1977 event,J. Geophys. Res.,91, 3020–3028.

    Google Scholar 

  • Anderson, K. A. (1981), Measurements of bow shock particles far upstream from the earth,J. Geophys. Res.,86, 4445.

    Google Scholar 

  • Armstrong, T. P., S. M. Krimigis, and K. W. Behannon (1970), Proton fluxes at 300 keV associated with propagating interplanetary shock waves,J. Geophys. Res.,75, 5980–5988.

    Google Scholar 

  • Armstrong, T. P., M. E. Pesses, and R. B. Decker (1985) Shock Drift Acceleration, inCollisionless Shocks in the Heliosphere: Reviews of Current Research, Tsurutani and Stone, editors, pp. 271–286, AGU Monograph No. 35.

  • Armstrong, T. P., G. Chen, E. T. Sarris and S. M. Krimigis (1977) Acceleration and modulation of electrons and ions by propagating interplanetary shocks.Study of Travelling Interplanetary Phenomena, M. A. Shea et al., eds. D. Reidel Pub. Co., Dordrecht, Holland, 367–389.

    Google Scholar 

  • Asbridge, J. R., S. J. Bame, and I. B. Strong (1968) Observed flow of protons from the earth's bow shock,J. Geophys. Res.,73, 5777.

    Google Scholar 

  • Baker, D. N., R. D. Zwickl, S. M. Krimigis, J. F. Carbary and M. H. Acuña (1984), Energetic particle transport in the upstream region of Jupiter: Voyager Results,J. Geophys. Res.,89, 3735–3746.

    Google Scholar 

  • Decker, R. B., M. E. Pesses, and S. M. Krimigis (1981), Shock-associated low energy ion enhancements observed by Voyagers 1 and 2,J. Geophys. Res.,86, 8819–8831.

    Google Scholar 

  • Decker R. B., S. M. Krimigis, and D. Venkatesan (1987), Latitudinal gradient of energetic particles in the outer heliosphere during 1985–1986,J. Geophys. Res.,92, 3375–3379.

    Google Scholar 

  • Decker, R. B. (1988a), The role of drifts in diffusive shock acceleration,Ap. J., 324, 566.

    Google Scholar 

  • Decker, R. B. (1988b), Computer modeling of test particle acceleration at oblique shocks,Space Sci. Rev.,48, 195–262.

    Google Scholar 

  • Decker, R. B., Particle acceleration at shocks with surface ripples,J. Geophys. Res.,95, A8, 11993–12,003, 1990.

    Google Scholar 

  • Ellison, D. C. (1985), Shock acceleration of diffuse ions at the earth's bow shock: Acceleration efficiency and A/Z enhancements,J. Geophys. Res.,90, 29.

    Google Scholar 

  • Gleeson, L. J., and W. I. Axford (1967) Cosmic rays in the interplanetary medium,Astrophys. J.,149, L115.

    Google Scholar 

  • Gold, R. E., R. B. Decker, L. J. Lanzerotti, C. G. Maclennan, and S. M. Krimigis (1988), Latitude and radial dependence of shock acceleration in the heliosphere,J. Geophys. Res.,93, 991–996.

    Google Scholar 

  • Goldstein, M. L., H. K. Wong, A. F. Vinas, and C. W. Smith (1985), Large amplitude MHD waves upstream of the Jovian bow shock: Reinterpretation,J. Geophys Res.,90, 302.

    Google Scholar 

  • Hamilton, D. C., G. Gloeckler, S. M. Krimigis, and L. J. Lanzerotti (1981), Composition of non-thermal ions in the Jovian magnetosphere,J. Geophys. Res.,86, 8301–8318.

    Google Scholar 

  • Ipavich, F. M., G. Gloeckler, C. Y. Fan, L. A. Fisk, D. Hovestadt, B. Klecker, J. J. O'Gallagher, and M. Scholer (1979), Initial observations of low energy charged particles near the earth's bow shock on ISEE-1,Space Sci. Rev.,23, 93.

    Google Scholar 

  • Ipavich, F. M. M. Scholer, and G. Gloeckler (1981), Temporal development of composition, spectra, and anisotropies during upstream particle events,J. Geophys. Res.,86, 11153.

    Google Scholar 

  • Kennel, C. F., F. V. Coroniti, F. L. Scarf, W. A. Livesey, C. T. Russell, E. J. Smith, K. P. Wenzel, and M. Scholer (1986), A test of Lee's quasi-linear theory of ion acceleration by interplanetary traveling shocks,J. Geophys. Res.,91, 11917–11928.

    Google Scholar 

  • Krimigis, S. M., T. P. Armstrong, W. I. Axford, C. O. Bostrom, C. Y. Fan, G. Gloeckler, and L. J. Lanzerotti (1977), The Low Energy Charged Particle (LECP) experiment on the Voyager spacecraft,Space Sci. Rev.,21, 329–354.

    Google Scholar 

  • Krimigis, S. M., J. F. Carbary, E. P. Keath, C. O. Bostrom, W. I. Axford, G. Gloeckler, L. J. Lanzerotti, and T. P. Armstrong (1981), Characteristics of hot plasma in the Jovian magnetosphere: Results from the Voyager spacecraft,J. Geophys. Res.,86, 8227–78257.

    Google Scholar 

  • Krimigis, S. M., J. F. Carbary, E. P. Keath, T. P. Armstrong, L. J. Lanzerotti, and G. Gloeckler (1983), General characteristics of hot plasma and energetic particles in the Saturnian magnetosphere: Results from the Voyager spacecraft,J. Geophys. Res.,88, 8871.

    Google Scholar 

  • Krimigis, S. M., R. D. Zwickl, and D. N. Baker (1985), Energetic ions upstream of Jupiter's bow shock,J. Geophys. Res., 3947–3960.

  • Krimigis, S. M., G. Sibeck, and R. W. McEntire (1986), Magnetospheric particle injection and the upstream ion event of September 5, 1984,Geophys. Res. Lett.,13, 1376–1379.

    Google Scholar 

  • Krimigis, S. M. (1986), Energetic ions upstream of planetary bow shocks: Fermi acceleration or leakage? Comparative Study of Magnetospheric Systems, CNES Editor, CEPADUES Editions, Toulouse, France, 99–124.

    Google Scholar 

  • Krimigis, S. M., E. P. Keath, B. H. Mauck, A. F. Cheng, L. J. Lanzerotti, R. P. Lepping, and N. F. Ness (1988), Observations of energetic ion enhancements and fast neutrals upstream and downstream of Uranus' bow shock by the Voyager 2 spacecraft,Planetary & Space Sci.,36, 311–328.

    Google Scholar 

  • Krimigis, S. M., T. P. Armstrong, W. I. Axford, C. O. Bostrom, A. F. Cheng, G. Gloeckler, D. C. Hamilton, E. P. Keath, L. J. Lanzerotti, B. H. Mauk, and J. A. Van Allen, Hot plasma and energetic particles in Neptune' magnetosphere,Science,246, 1483–1494, 1989.

    Google Scholar 

  • Lee, M. A. (1982), Coupled hydromagnetic wave excitation and ion acceleration upstream of the earth's bow shock,J. Geophys. Res.,87, 5063.

    Google Scholar 

  • Lee, M. A. (1983), The association of energetic particles and shocks in the heliosphere,Rev. Geophys.,21, 324.

    Google Scholar 

  • Lin, R. P., C.-I. Meng, and K. A. Anderson (1974) 30 to 100 keV protons upstream from the earth's bow shock,J. Geophys. Rs.,79, 489.

    Google Scholar 

  • Moebius, E., D. Hovestadt, B. Klecker, M. Scholer, F. M. Ipavich, C. W. Carlson, and R. P. Lin (1986), A burst of energetic O+ ions during an upstream particle event,Geophys. Res. Lett.,13, 1372–1375.

    Google Scholar 

  • Rosner,R., E. L. Chupp, G. Gloeckler, D. J. Gorney, S. M. Krimigis, Y.Mok, R. Ramaty, D. W. Swift, L. Vlahos, and E. G. Zweibel (1984), Particle acceleration, inSolar-Terrestrial Physics: Present and Future, D. Bulter and K. Papadopoulos, eds., NASA-RP-1120.

  • Sards, E. T., and S. M. Krimigis (1985), Quasi-perpendicular shock acceleration of ions of ∼ 200 MeV and electrons to ∼ 2 MeV observed by Voyager-2,Astrophys. J.,298, 676–683.

    Google Scholar 

  • Sarris, E. T., S. M. Krimigis, and T. P. Armstrong (1976), Observations of magnetospheric bursts of high-energy protons and electrons at ∼ 36 RE with IMP 7,J. Geophys. Res.,81, 2341.

    Google Scholar 

  • Sarris, E. T., S. M. Krimigis, C. O. Bostrom, and T. P. Armstrong (1978), Simultaneous multispacecraft observations of energetic proton bursts inside and outside the magnetosphere,J. Geophys. Res.,83, 4289.

    Google Scholar 

  • Sarris, E. T., G. C. Anagnostopoulos, and S. M. Krimigis (1987), Simultaneous measurements of energetic ion (≥ 50 keV) and electron (> 220 keV) activity upstream of earth's bow shock and inside the plasma sheet: Magnetospheric source for the November 3 and December 3, 1977 upstream events,J. Geophys. Res.,92, 12,083–12,096.

    Google Scholar 

  • Scholer, M., (1985) Diffusive Acceleration, inCollisionless Shocks in the Heliosphere, B. T. Tsuruanti, and R. G. Stone, Editors., pp. 287–301, A. G. U. Monograph, Washington, D. C., U.S.A.

    Google Scholar 

  • Scholer, M., D. Hovestadt, F. M. Ipavich, and G. Gloeckler (1981), Upstream energetic ions and electrons: Bow shock-associated or magnetospheric origin?J. Geophys. Res.,86, 9040.

    Google Scholar 

  • Sibeck, D. G., R. W. McEntire, S. M. Krimigis, and D. N. Baker (1988), The magnetosphere as a sufficient source for upstream ions on November 1, 1984,J. Geophys. Res.,93, 14328.

    Google Scholar 

  • Smith, E. J., and J. H. Wolfe (1979), Fields and plasmas in the outer solar system,Space Sci. Rev.,23, 217.

    Google Scholar 

  • Somogyi, A. J., and 33 co-authors (1986), First observations of energetic particles near comet Halley,Nature,321, 285–288.

    Google Scholar 

  • Zwickl, R. D., S. M. Krimigis, T. P. Armstrong, and L. J. Lanzerotti (1980), Ions of Jovian origin observed by Voyager 1 and 2 in interplanetary space,Geophys. Res. Lett.,1, 453.

    Google Scholar 

  • Zwickl, R. D., S. M. Krimigis, J. F. Carbary, E. P. Keath, T. P. Armstrong, D. C. Hamilton, and G. Gloeckler (1981), Energetic particle events (>30 keV) of Jovian origin observed by Voyager 1 and 2 in interplanetary space,J. Geophys. Res., 86, 8125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krimigis, S.M. Voyager energetic particle observations at interplanetary shocks and upstream of planetary bow shocks: 1977–1990. Space Sci Rev 59, 167–201 (1992). https://doi.org/10.1007/BF01262539

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01262539

Keywords

Navigation