Skip to main content
Log in

Electroelastic fields and effective moduli of a medium containing cavities or rigid inclusions of arbitrary shape under anti-plane mechanical and in-plane electric fields

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

We examine the two-dimensional problem of an infinite piezoelectric medium containing a solitary cavity or rigid inclusion of arbitrary shape, subjected to a coupled anti-plane mechanical and in-plane electric load at the remote boundary of the matrix. Conformal mapping techniques are employed to analyze the boundary value problems. Specific results are given for elliptical, polygonal and star-shape inclusions. Local fields of this type are used to estimate the overall moduli of a medium containing voids or rigid inclusions. This is accomplished with the help of an extension of Eshelby's formula which evaluates the total electric enthalpy by a particular line integral. Explicit estimates of the effective moduli are derived for dilute as well as for moderate area fractions of inclusions. The formulae depend solely on the cross area of the inclusion, area fraction and one particular coefficient of the mapping function. In addition, the stress and electric displacement singularities around the sharp corners of the inclusion are examined. The existence of uniform fields inside the inclusion is also envisaged. The present results, with appropriate modifications, apply equally well to those of thermoelectric and magnetoelectric effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schulgasser, K.: Relationships between the effective properties of transversely isotropic piezoelectric composites. J. Mech. Phys. Solids40, 473–479 (1992).

    Google Scholar 

  2. Benveniste, Y., Dvorak, G. J.: On uniform fields and universal relations in piezoelectric composites. J. Mech. Phys. Solids40, 1295–1312 (1992).

    Google Scholar 

  3. Chen, T.: Piezoelectric properties of multiphase fibrous composites: some theoretical results. J. Mech. Phys. Solids41, 1781–1794 (1993).

    Google Scholar 

  4. Benveniste, Y.: On the micromechanics of fibrous piezoelectric composites. Mech. Mater.18, 183–193 (1994).

    Google Scholar 

  5. Benveniste, Y.: Correspondence relations among equivalent classes of heterogeneous piezoelectric solids under anti-plane mechanical and in-plane electrical fields. J. Mech. Phys. Solids43, 553–571 (1995).

    Google Scholar 

  6. Wang, B.: Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material. Int. J. Solids Struct.29, 293–308 (1992).

    Google Scholar 

  7. Dunn, M. L., Taya, M.: An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proc. R. Soc. London Ser.A 443, 265–287 (1993).

    Google Scholar 

  8. Dunn, M. L., Taya, M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct.30, 161–175 (1993).

    Google Scholar 

  9. Chen, T.: Micromechanical estimates of the overall thermoelectroelastic moduli of multiphase fibrous composites. Int. J. Solids Struct.31, 3099–3111 (1994).

    Google Scholar 

  10. Wang, B.: Effective behavior of piezoelectric composites. Appl. Mech. Rev.47, S112-S121 (1994).

    Google Scholar 

  11. Benveniste, Y.: The determination of the elastic and electric fields in a piezoelectric inhomogeneity. J. Appl. Phys.72, 1086–1095 (1992).

    Google Scholar 

  12. Thorpe, M. F.: The conductivity of a sheet containing a few polygonal holes and/or superconducting inclusions. Proc. R. Soc. London Ser.A 437, 215–227 (1992).

    Google Scholar 

  13. Eshelby, J. D.: The continuum theory of lattice defects. In: Progress in solid state physics, vol. 3 (Seitz, F., Turnbull, D., eds.) p. 79. New York: Academic Press 1956.

    Google Scholar 

  14. Jasiuk, I., Chen, J., Thorpe, M. F.: Elastic moduli of two dimensional materials with polygonal and elliptical holes. Appl. Mech. Rev.47, S18-S28 (1994).

    Google Scholar 

  15. Honein, T., Honein, B., Honein, E., Herrmann, G.: On piezoelectric circular inclusions. In: Mechanical modelling of new electromagnetic materials (Hsieh, R. K. T., ed.) pp. 259–266 New York: Elsevier 1990.

    Google Scholar 

  16. Gong, S. X., Meguid, S. A.: A general treatment of the elastic field of an elliptical inhomogeneity under anti-plane shear. J. Appl. Mech.59, S131-S135 (1992).

    Google Scholar 

  17. Hill, R.: Theory of mechanical properties of fibre-strengthened materials: I. elastic behaviour. J. Mech. Phys. Solids12, 199–212 (1964).

    Google Scholar 

  18. Muskhelishvili, N. I.: Some basic problems of the mathematical theory of elasticity. Groningen: Noordhoff 1953.

    Google Scholar 

  19. Markushevich, A. I.: Theory of functions of a complex variable. New Jersey: Prentice Hall 1970.

    Google Scholar 

  20. Mura, T., Shodja, H. M., Lin, T. H., Safadi, A., Makkawy, A.: The determination of the elastic field of a pentagonal star shaped inclusion. In: Recent advances in engineering science, (Allen, D. H., Lagoudas, D. C., eds.), p. 262. College Station, Texas 1994.

  21. Milgrom, M., Shtrikman, S.: Linear response of two-phase composites with cross moduli: exact universal relations. Phys. Rev.A 40, 1568–1575 (1989).

    Google Scholar 

  22. Benveniste, Y.: A new approach to the application of Mori-Tanaka's theory in composite materials. Mech. Mater.6, 147–157 (1987).

    Google Scholar 

  23. Weng, G. J.: The theoretical connection between Mori-Tanaka's theory and the Hashin-Shtrikman-Walpole bounds. Int. J. Eng. Sci.28, 1111–1120 (1990).

    Google Scholar 

  24. Eshelby, J. D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. London Ser.A 241, 376–396 (1957).

    Google Scholar 

  25. Tiersten, H. F.: Linear piezoelectric plate vibrations. New York: Plenum Press 1969.

    Google Scholar 

  26. Christensen, R. M.: Mechanics of composite materials. New York: Wiley 1979.

    Google Scholar 

  27. Churchill, R. V., Brown, J. W.: Complex variable and applications. Singapore: McGraw-Hill 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T., Chiang, S.C. Electroelastic fields and effective moduli of a medium containing cavities or rigid inclusions of arbitrary shape under anti-plane mechanical and in-plane electric fields. Acta Mechanica 121, 79–96 (1997). https://doi.org/10.1007/BF01262524

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01262524

Keywords

Navigation