Skip to main content
Log in

Autoradiographic and microphotometric studies of desoxyribose nucleic acid during microgametogenesis in lilium longiflorum

  • Published:
Chromosoma Aims and scope Submit manuscript

Summary

  1. 1.

    The technique for making autoradiographs with stripping film is described in detail. Methods for administering P32 to plants and for preparation of tissues for autoradiographs are given.

  2. 2.

    Two different methods, enzyme digestion and acid hydrolysis, which were used for separating RNA, DNA, and phosphoprotein in tissue sections, were compared and evaluated. Although either method is valid for quantitative work, precautions are necessary and certain limitations to the quantitative separation of RNA and DNA should be taken into account. More work is needed to properly characterize the products extracted during enzyme digestion and acid hydrolysis.

  3. 3.

    Incorporation of P32 into nuclei of lily anthers was studied by the autoradiographic method at all stages from premeiosis to mature pollen. A quantitative comparison of the amounts of P32 extracted by RNase, DNase, Feulgen hydrolysis and hot TCA showed that incorporation into DNA occurred at relatively short periods during interphase, namely: (1) at preleptotene before meiotic prophase in microsporocytes, (2) at late interphase preceding mitosis in the microspore and (3) during early to mid-interphase in the generative nucleus of the pollen grain (the tube nucleus incorporates P32 slowly during the same period but this P32 was not definitely identified as DNA phosphorus). Two successive mitoses occur in tapetal cells while the microsporocytes are in meiotic prophase. In the interphase preceding each division incorporation of P32 into DNA occurs, but following the second mitosis no further divisions or incorporation was detected. However, during this latter period incorporation into RNA and phosphoprotein reached the highest level detected at any stage.

    During the period of DNA synthesis, incorporation of P32 into RNA was low or absent, but in the interval between the cessation of DNA synthesis and prophase the incorporation of P32 into RNA of both nucleus and cytoplasm reached its peak.

  4. 4.

    Microphotometric determination of amounts of DNA (Feulgen stain) showed that the amount per nucleus remains constant in all stages, except for doubling during the periods when P32 is incorporated, and the reduction by half at each division of a nucleus. The 2C amount is present in sporogenous nuclei until preleptotene when values intermediate between 2C and 4C are found. By the beginning of leptotene 4C is present in each microsporocyte nucleus. The amount does not change through meiotic prophase. Each nucleus after the first meiotic division contains 2C and each nucleus of the quartet of spores has 1C. The amount per nucleus in microspores doubles toward the end of the long interphase prior to prophase. After the mitosis in the microspore, the generative nucleus attains the 2C level relatively early in interphase. The vegetative nucleus has 1C in the interphase immediately after mitosis, but could not be accurately measured at later stages.

    Tapetal nuclei have the 2C amount of DNA when the microsporocytes are in leptotene. The amount doubles while the microsporocytes are in zygotene and the first mitosis usually occurs while the microsporocytes are in early pachytene. Another doubling occurs during the relatively short interphase and a second mitosis occurs when the microsporocytes are in late pachytene or early diplotene. The 4C class was typical for tapetal nuclei at later stages, but this may, in some cases at least, result from fusion of nuclei in the multinucleate cells during or following the second mitosis.

  5. 5.

    The periods of DNA increase (measured microphotometrically) coincide very closely with the periods of incorporation of P32 into DNA. This finding supports the concept of the stability of the DNA molecule, and indicates that incorporation may be used as a criterion not only of synthesis of DNA, but also of increase in the amount of DNA per nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  • Alfert, M.: A cytochemical study of oögenesis and cleavage in the mouse. J. Cellul. a. Comp. Physiol.36, 381–406 (1950).

    Google Scholar 

  • Alfert, M., andH. Swift: Nuclear DNA constancy: a critical evaluation of some exceptions reported byLison andPasteels. Exper. Cell Res.5, 455–460 (1953).

    Google Scholar 

  • Barnum, C. P., R. A. Huseby andH. Vermund: A time study of the incorporation of radiophosphorus into the nucleic acids and other compounds of a transplanted mouse mammary carcinoma. Cancer Res.13, 880–889 (1953).

    PubMed  Google Scholar 

  • Brues, A. M., M. M. Tracy andW. E. Cohn: Nucleic acids of rat liver and hepatoma: their metabolic turnover in relation to growth. J. of Biol. Chem.155, 619–633 (1944).

    Google Scholar 

  • Bryan, J. H. D.: DNA-protein relations during microsporogenesis ofTradescantia. Chromosoma4, 369–392 (1951).

    PubMed  Google Scholar 

  • Cooper, D. C.: The transfer of desoxyribose nucleic acid from the tapetum to the microsporocytes at the onset of meiosis. Amer. Naturalist86, 219–229 (1952).

    Google Scholar 

  • Erickson, R. O.: Cytological and growth correlations in the flower bud and anther development ofLilium longiflorum. Amer. J. Bot.35, 729–739 (1948).

    Google Scholar 

  • Hevesy, G., andJ. Ottesen: Rate of formation of nucleic acid in the organs of the rat. Acta physiol. scand. (Stockh.)5, 237–247 (1943).

    Google Scholar 

  • Howard, A., andS. R. Pelc: Nuclear incorporation of P32 as demonstrated by autoradiographs. Exper. Cell Res.2, 178–187 (1951).

    Google Scholar 

  • Kaufmann, B. P., H. Gay andM. R. McDonald: Enzymatic degradation of ribonucleoprpteins. Amer. J. Bot.38, 268–275 (1951).

    Google Scholar 

  • Leblond, C. P., C. E. Stevens andR. Bagorach: Histological localization of newly-formed desoxyribonucleic acid. Science (Lancaster, Pa).108, 531–533 (1948).

    Google Scholar 

  • Leuchtenberger, C., G. Klein andE. Klein: The estimation of nucleic acids in individual isolated nuclei of Ascites tumors by ultraviolet microspectrophotometry and its comparison with chemical analysis. Cancer Res.12. 277 (1952).

    Google Scholar 

  • McMaster, Rachel D.: The desoxyribonucleic acid content of nuclei in the sea urchin,Lytechinus variegatus, during development. Anat. Rec.113, 26 (1952). Abstract.

    Google Scholar 

  • Moses, M. J., andJ. H. Taylor: Desoxypentose nucleic acid synthesis during microsporogenesis inTradescantia. Rec. Genetics Soc. Amer.22, 88–89 (1953). Abstract.

    Google Scholar 

  • Nelson, P. K.: Ph. D. thesis, Univ. of Wisconsin 1951. Quoted byC. L. Huskins, Nuclear reproduction. Internat. Rev. Cytol.1, 9–26 (1952).

  • Ogur, M., R. O. Erickson, G. U. Rosen, K. B. Sax andC. Holden: Nucleic acids in relation to cell division inLilium langifloum. Exper. Cell Res.2, 73–89 (1951).

    Google Scholar 

  • Ogur, M., andG. U. Rosen: The nucleic acids of plant tissues. I. The extraction and estimation of desoxypentose nucleic acid and pentose nucleic acid. Arch. of Biochem.25, 262 to 276 (1950).

    Google Scholar 

  • Ornstein, L.: The distributional error in microspectrophotometry. Labor. Invest.1, 250–262 (1952).

    Google Scholar 

  • Pasteels, J., etW. S. Bullough: Augmentation expérimentale de la teneur en DNA des noyaux. (Action de l'huile de crotonsur l'epiderme de l'oreille de souris). Archives de Biol.54, 271–294 (1953).

    Google Scholar 

  • Pasteels, J., etL. Lison: Etude quantitative de l'acide desoxyribonucléique au cours de la formation du pollen chezTradescantia virginiana. C. r. Acad. Sci. Paris233, 196–199 (1951).

    PubMed  Google Scholar 

  • Patau, K.: Absorption microphotometry of irregular shaped objects. Chromosoma5, 341–362 (1952).

    PubMed  Google Scholar 

  • Patau, K., u.H. Swift: The DNA-content (Feulgen) of nuclei during mitosis in a root tip of onion. Chromosoma6, 149–169 (1953).

    PubMed  Google Scholar 

  • Plaut, W. S.: DNA synthesis in the microsporocytes ofLilium henryi. Hereditas39, 439–444 (1953).

    Google Scholar 

  • Pollister, A. W.: Photomultiplier apparatus for microspectrophotometry of cells. Labor. Invest.1, 106–114 (1952).

    Google Scholar 

  • Pollister, A. W., andH. Ris: Cytological nucleoprotein determination in preparations. Cold Spring Harbor Symp. Quant. Biol.12, 157 (1947).

    Google Scholar 

  • Schrader, F., andC. Leuchtenberger: Variations in the amount of desoxyribose nucleic acid in different tissues ofTradescantia. Proc. Nat. Acad. Sci. U.S.A.35, 464–468 (1949).

    Google Scholar 

  • Stevens, C. E., R. Daoust andC. P. Leblond: Rate of synthesis of desoxyribonucleic acid and mitotic rate in liver and intestine. J. of Biol. Chem.202, 177–186 (1953).

    Google Scholar 

  • Stowell, R. E.: Feulgen reaction for thymonucleic acid. Stain Technol.20, 45–46 (1945).

    Google Scholar 

  • Swift, H.: The constancy of DNA in plant nuclei. Proc. Nat. Acad. Sci. U.S.A.36, 643–654 (1950a).

    Google Scholar 

  • —: The desoxyribose nucleic acid content of animal nuclei. Physiologic. Zool.23, 169–198 (1950b).

    Google Scholar 

  • —: Quantitative aspects of nuclear nucleo proteins. Internat. Rev. Cytol.2, 1–76 (1953).

    Google Scholar 

  • Taylor, J. H.: The duration of differentiation in excised anthers. Amer. J. Bot.37, 137–143 (1950).

    Google Scholar 

  • —: Autoradiographie detection of incorporation of P32 into chromosomes during meiosis and mitosis. Exper. Cell Res.4, 169–179 (1953).

    Google Scholar 

  • Walker, P. M. B., andHelen B. Yates: Nuclear components of dividing cells. Proc. Roy. Soc. Lond., Ser. B140, 274–300 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The investigation was supported by a grant to Columbia University from the Atomic Energy Commision, Contract AT (30-1)-1304, and by a grant from the Higgins Fund, Columbia University. Microphotometric equipment was made available through the courtesy of Dr.A. W. Pollister, Zoology Department, Columbia University. Technical assistance was provided byMaria F. Caluya andSandhya Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, J.H., McMaster, R.D. Autoradiographic and microphotometric studies of desoxyribose nucleic acid during microgametogenesis in lilium longiflorum. Chromosoma 6, 489–521 (1953). https://doi.org/10.1007/BF01259951

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01259951

Keywords

Navigation