Skip to main content
Log in

Down-regulation of dopamine D-2, 5-HT2 receptors and β-adrenoceptors in rat brain after prolonged treatment with a new potential antidepressant, Lu 19-005

  • Original Papers
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Lu 19-005 is a new phenylindan derivative with strong and equipotent inhibitory effect on dopamine (DA), noradrenaline (NA) and serotonin (5-HT) uptake. The adaptive effects of 2 weeks treatment with Lu 19-005, on receptor bindingin vitro and on d-amphetamine responsivenessin vivo have been investigated in rats. One or 3 days after the final dose the number ofβ-adrenoceptors and of 5-HT2 and DA D-2 receptors was decreased by 20–30%, whereasα 1-adrenoceptor number was slightly decreased only 1 day after withdrawal. The DA D-2 receptor number remained decreased at 7 days withdrawal, but returned to normal after another 3 days. The brain levels of DA, NA and 5-HT were not changed by 2 weeks' Lu 19-005 treatment. The down-regulation of DA D-2 receptors was accompanied by tolerance to d-amphetamine-induced hypermotility (after low doses) and stereotyped licking or biting (after a high dose). The tolerance to d-amphetamineinduced hypermotility was maximal at 3–5 days withdrawal time, and remained significant also 15 days after the last dose. An acute dose of Lu 19-005 did not modify the effects of d-amphetamine. The results are discussed in relation to the effect of prolonged treatment with other antidepressant drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama, K., Sato, M., Kashihara, K., Otsuki, S.: Lasting changes in high affinity3H-spiperone binding to the rat striatum and mesolimbic area after chronic methamphetamine administration: evaluation of dopaminergic and serotonergic receptor components. Biol. Psych.17, 1389–1402 (1982).

    Google Scholar 

  • Arnt, J., Christensen, A. V., Hyttel, J.: Dopamine activityin vivo of the phenylindan derivative, Lu 19-005, a new potent inhibitor of DA, NA and 5-HT uptake in rat brain. Naunyn-Schmiedeberg's Arch. Pharmacol.329, 101–107 (1985).

    Google Scholar 

  • Arnt, J., Hyttel, J., Overø, K. F.: Prolonged treatment with the specific 5-HT-uptake inhibitor citalopram: effect on dopaminergic and serotonergic functions. Pol. J. Pharmacol. Pharm.36, 217–226 (1984).

    PubMed  Google Scholar 

  • Asakura, M., Tsukamoto, T., Hasegawa, K.: Modulation of rat brainα 2 andβ-adrenergic receptor sensitivity following long-term treatment with antidepressants. Brain Res.235, 192–197 (1982).

    PubMed  Google Scholar 

  • Bendotti, C., Borsini, F., Catecchia, S., Blasi, A., Mennini, T., Samanin, R.: D-amphetamine-induced anorexia and motor behavior after chronic treatment in rats: relationship with changes in the number of catecholamine receptor sites in the brain. Arch. Int. Pharmacodyn. Ther.260, 36–49 (1982).

    PubMed  Google Scholar 

  • Chang, C. C.: A sensitive method for spectrophotofluorometric assay of catecholamines. Int. J. Neuropharmacol.3, 643–649 (1964).

    Google Scholar 

  • Charney, D. S., Menkes, D. B., Heninger, G. R.: Receptor sensitivity and the mechanism of action of antidepressant treatment. Arch. Gen. Psychiat.38, 1160–1180 (1981).

    PubMed  Google Scholar 

  • Costall, B., Naylor, R. J.: The behavioural effects of dopamine applied intracerebrally to areas of the mesolimbic system. European J. Pharmacol.32, 87–92 (1975).

    Google Scholar 

  • Earley, C. J., Leonard, B. E.: Isolation and assay of noradrenaline, dopamine, 5-hydroxytryptamine, and several metabolites from brain tissue using disposable bio-rad columns packed with sephadex G-10. J. Pharmacol. Methods1, 67–79 (1978).

    Google Scholar 

  • Ellison, G., Eison, M. S., Huberman, H. S., Daniel, F.: Long-term changes in dopaminergic innervation of caudate nucleus after continuous amphetamine administration. Science201, 276–278 (1978).

    PubMed  Google Scholar 

  • Hunt, P., Kannengiesser, M.-H., Raynaud, J. P.: Nomifensine: a new potent inhibitor of dopamine uptake into synaptosomes from rat brain corpus striatum. J. Pharm. Pharmacol.26, 370–371 (1974).

    PubMed  Google Scholar 

  • Hyttel, J.: Citalopram—pharmacological profile of a specific serotonin uptake inhibitor with antidepressant activity. Prog. Neuro-Psychopharmacol. Biol. Psychiat.6, 277–295 (1982).

    Google Scholar 

  • Hyttel, J., Fredricson Overø, K., Arnt, J.: Biochemical effects and drug levels in rats after long-term treatment with the specific 5-HT-uptake inhibitor, citalopram. Psychopharmacol.83, 20–27 (1984).

    Google Scholar 

  • Hyttel, J., Larsen, J.-J.: Neurochemical profile of Lu 19-005—a potent inhibitor of uptake of dopamine, noradrenaline and serotonin. J. Neurochem.44, 1615–1622 (1985).

    PubMed  Google Scholar 

  • Kelly, P. H., Seviour, P. W., Iversen, S. D.: Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res.94, 507–522 (1975).

    PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275 (1951).

    PubMed  Google Scholar 

  • Maj, J., Przegalinski, E., Mogilnicka, E.: Hypotheses concerning the mechanism of action of antidepressant drugs. Rev. Physiol. Pharmacol.100, 1–74 (1984 a).

    Google Scholar 

  • Maj, J., Rogoz, Z., Skuza, G., Sowinska, H.: Repeated treatment with antidepressant drugs potentiates the locomotor response to d-amphetamine. J. Pharm. Pharmacol.36, 127–130 (1984 b).

    PubMed  Google Scholar 

  • Modigh, K.: Long-term effects of electroconvulsive shock therapy on synthesis, turnover and uptake of brain monoamines. Psychopharmacology (Berlin)49, 179–185 (1976).

    Google Scholar 

  • Nielsen, E. B., Nielsen, M., Braestrup, C.: Reduction of3H-spiroperidol binding in rat striatum and frontal cortex by chronic amphetamine: dose response, time course and role of sustained dopamine release. Psychopharmacology81, 81–85 (1983).

    PubMed  Google Scholar 

  • Peroutka, S. J., Snyder, S. H.: Long-term antidepressant treatment decreases spiroperidol-labeled serotonin receptor binding. Science210, 88–90 (1980).

    PubMed  Google Scholar 

  • Pijnenburg, A. J. J., Honig, W. M. M., Van der Heyden, J. A. M., van Rossum J. M.: Effects of chemical Stimulation of the mesolimbic dopamine system upon locomotor activity. European J. Pharmacol.35, 45–58 (1976).

    Google Scholar 

  • Randrup, A., Munkvad, I., Fog, R., Gerlach, J., Molander, L., Kjellberg, B., ScheelKrüger, J.: Mania, depression and brain dopamine. In: Current Development in Psychopharmacology (Essmann, W. B., Valzelli, L., eds.), Vol. 2, pp. 206–248. New York: Spectrum. 1975.

    Google Scholar 

  • Robertson, H. A.: Chronic d-amphetamine and phencyclidine: effects on dopamine agonist and antagonist binding sites in the extrapyramidal and mesolimbic systems. Brain Res.267, 179–182 (1983).

    PubMed  Google Scholar 

  • Schildkraut, J. J., Roffman, M., Orsulak, P. J., Schatzberg, A. F., Kling, M. A., Reigle, T. G.: Effects of short- and long-term administration of tricyclic antidepressants and lithium on norepinephrine turnover in brain. Pharmakopsychiatr. Neuropsychopharmakol.9, 193–202 (1976).

    PubMed  Google Scholar 

  • Schildkraut, J. J., Winokur, A., Draskoczy, P. R., Hensle, I. H.: Changes in norepinephrine turnover in rat brain during chronic administration of imipramine and protriptyline. A possible explanation for the delay in onset of clinical antidepressant effects. Am. J. Psychiat.127, 1032–1039 (1971).

    PubMed  Google Scholar 

  • Sibley, D. R., Weinberger, S., Segal, D. S., Creese, I.: Multiple daily amphetamine administration decreases both3H-agonist and3H-antagonist dopamine receptor binding. Experientia38, 1224–1225 (1982).

    PubMed  Google Scholar 

  • Siegel, S.: Nonparametric statistics for the behavioural sciences. New York: McGraw-Hill. 1956.

    Google Scholar 

  • Spyraki, C., Fibiger, H. C.: Behavioural evidence for supersensitivity of postsynaptic dopamine receptors in the mesolimbic system after chronic administration of desipramine. European J. Pharmacol.74, 195–206 (1981).

    Google Scholar 

  • Sugrue, M. F.: Changes in rat brain monoamine turnover following chronic antidepressant administration. Life Sci.26, 423–429 (1980).

    PubMed  Google Scholar 

  • Sugrue, M. F.: Chronic antidepressant administration and adaptive changes in central monoaminergic systems. In: Antidepressants: Neurochemical, Behavioural and Clinical Perspectives (Enna, S. I., Malick, J. B., Richelson, E., eds.), pp. 13–30. New York: Raven Press. 1981.

    Google Scholar 

  • Van der Waerden, B. E., Nievergelt, E.: Tables for comparing two samples by Xtest and sign test. Berlin-Göttingen-Heidelberg: Springer. 1956.

    Google Scholar 

  • Van Praag, H. M.: In search of the mode of action of antidepressants. 5-HT/tyrosine mixtures in depressions. Neuropharmacology22, 433–440 (1983).

    PubMed  Google Scholar 

  • Vetulani, J., Sulser, F.: Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in limbic forebrain. Nature257, 495–496 (1975).

    PubMed  Google Scholar 

  • Vetulani, J., Stawarz, R. J., Dingell, J. V., Sulser, F.: A possible common mechanism of action of antidepressant treatment. Reduction in the sensitivity of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn-Schmiedeberg's Arch. Pharmacol.293, 109–114 (1976 a).

    Google Scholar 

  • Vetulani, J., Stawarz, R. J., Sulser, F.: Adaptive mechanisms of the noradrenergic cyclic AMP generating system in the limbic forebrain of the rat: adaptation to persistent changes in the availability of norepinephrine (NE). J. Neurochem.27, 661–666 (1976 b).

    PubMed  Google Scholar 

  • Willner, P.: Dopamine and depression: A review of recent evidence. III. The effects of antidepressant treatments. Brain Research Reviews6, 237–246 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, PL-31-343 Krakow, Poland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, G., Arnt, J., Hyttel, J. et al. Down-regulation of dopamine D-2, 5-HT2 receptors and β-adrenoceptors in rat brain after prolonged treatment with a new potential antidepressant, Lu 19-005. J. Neural Transmission 64, 227–238 (1985). https://doi.org/10.1007/BF01256469

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01256469

Key words

Navigation