Skip to main content
Log in

Development of an optical membrane for humidity

  • Original Papers
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

4-(N,N-dioctylamino)-4′-trifluoroacetyl-azobenzene (ETHT 4001), together with the catalyst tridodecylmethylammonium chloride, is dissolved in the hydrophilic polymer polyurethane Tecoflex. The resulting membrane layers show high sensitivity toward water vapour and allow the application of the membranes for humidity measurements. Upon exposure to humid air, the membrane exhibits a decrease in absorbance at a wavelength around 490 nm and an increase at around 430 nm. This signal change is caused by the conversion of the trifluoroacetyl group of the reactand into a diol, thus changing the electron delocalisation of the reactand. The sensor layer exhibits a dynamic range from 1% to 100% RH with highest sensitivity in the 5%–40% RH range. The limit of detection is 0.5% RH. The amount of added catalyst enables the sensitive range to be tailored. The selectivity over ethanol and carbonate is sufficient for the membrane to be used for long-term measurements of air. The change in colour of the humidity-sensitive membrane from red to yellow also means it can be used as an optical test strip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Yamazoe, Y. Shimizu,Sens. Act. A 1986,10, 377–398.

    Google Scholar 

  2. H. Huang, P. K. Dasgupta,Anal. Chem. 1990,62, 1935–1942.

    Google Scholar 

  3. F. Boltinghouse, K. Abel,Anal. Chem. 1989,61, 1863–1866.

    Google Scholar 

  4. Y Sadako, Y. Sakai, X. Wang,J. Mater. Sciences 1994,29, 883–886.

    Google Scholar 

  5. D. B. Papkovsky, G. V. Ponomarev, S. F. Chernov, A. N. Ovchinnikov, I. N. Kurochkin,Sens. Act. B 1994,22, 57–61.

    Google Scholar 

  6. Y. Sadaoka, M. Matsuguchi, Y. Sakai, Y. Murata,Chem. Lett. 1992, 53–56.

  7. T. E. Brook, M. N. Taib, R. Narayamaswamy,Sens. Act. B 1997,38–39, 272–276.

    Google Scholar 

  8. Q. Chang, Z. Murtaza, J. R. Lakowicz, G. Rao,Anal. Chim. Acta 1997,350, 97–104.

    Google Scholar 

  9. K. Seiler, K. Wang, M. Kuratli, W. Simon,Anal. Chim. Acta 1991,244, 151–160.

    Google Scholar 

  10. R. Wild, D. Citterio, J. Spichiger, U. E. Spichiger,J. Biotechnol. 1996,50, 37–46.

    Google Scholar 

  11. K. Wang, K. Seiler, J. P. Haug, B. Lehmann, S. West, K. Hartman, W. Simon,Anal. Chem. 1991,63, 970–974.

    Google Scholar 

  12. G. J. Mohr and U. E. Spichiger-Keller,Proc. SPIE 1997,3105, 130–137.

    Google Scholar 

  13. G. J. Mohr, D. Citterio, and U. E. Spichiger-Keller,Sens. Act. B,1998,49, 224–232.

    Google Scholar 

  14. U. E. Spichiger-Keller,Chemical Sensors and Biosensors for Medical and Biological Applications, Wiley VCH, Weinheim, 1998.

    Google Scholar 

  15. J. Gmehling, U. Onken, in:Vapor-liquid equilibrium data collection. Aqueous-organic systems. (D. Behrens, R. Eckermann, eds.), Chemistry Data Series. Vol. 1, Part 1., DECHEMA, Deutsche Gesellschaft für Chemisches Apparatewesen, Frankfurt a. M, 1977.

    Google Scholar 

  16. C. Behringer, B. Lehmann, J. P. Haug, K. Seiler, W. E. Morf, K. Hartman, W. Simon,Anal. Chim. Acta 1990,233, 41–47.

    Google Scholar 

  17. J. March,Advanced Organic Chemistry, 3rd., Wiley, New York, 1985, p. 906.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohr, G.J., Spichiger-Keller, U.E. Development of an optical membrane for humidity. Mikrochim Acta 130, 29–34 (1998). https://doi.org/10.1007/BF01254587

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01254587

Key words

Navigation