Skip to main content
Log in

Chloroplast DNA as an evolutionary marker in thePhaseolus vulgaris complex

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We have analyzed the changes occurring in the chloroplast DNA (cpDNA) of taxa belonging to thePhaseolus vulgaris complex to help clarify relationships among species of this complex. Two restriction maps for 11 restriction enzymes comprising the whole chloroplast genome from a wildP. vulgaris and a wildP. coccineus accession were constructed. These maps allowed us to compare a total of 330 restriction sites between the two genomes in order to identify polymorphisms, assess the type of mutations detected, and identify regions of high variability. A region, located in the large single-copy region near the borders with the inverted repeats, accounted for a large portion of the variation. Most of the mutations detected were due to restriction sites gains or losses. Variable and conserved regions were then evaluated in 30 accessions belonging to taxa of theP. vulgaris complex. Phylogenetic analyses were made using parsimony methods. Conclusions obtained from such analyses were the following: (1) there was high cpDNA variability withinP. coccineus but not inP. vulgaris. (2)P. coccineus subsp.glabellus showed a very distinct cpDNA type that strongly suggests that it actually belongs to a different but as yet undetermined section of the genus. Our cpDNA observations are supported by distinctive morphological traits and reproductive biology of this taxon. (3) InP. coccineus subsp.darwinianus (also classified asP. polyanthus), the cpDNA lineage was in disagreement with data obtained from nuclear markers and suggested a reticulated origin by hybridization betweenP. coccineus as the male parent and an ancestralP. polyanthus type, closely allied toP. vulgaris, as the seed parent. This initial cross was presumably followed by repeated backcrossing toP. coccineus. Our cpDNA studies illustrate the importance of molecular markers in elucidating phylogenetic relationships. They also indicate that accurate phylogenies will require analyses of both nuclear and cytoplasmic genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert VA, Mishler BD, Chase MW (1992) Character-state weighing for restriction site data in phylogenetic reconstruction, with an example from chloroplast DNA. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman Hall, New York, pp 369–403

    Google Scholar 

  • Bassiri A, Adams MW (1978) An electrophoretic survey of seedling isozymes in severalPhaseolus species. Euphytica 27:447–459

    Google Scholar 

  • Clegg MT, Zurawski G (1992) Chloroplast DNA and the study of plant phylogeny: present status and future prospects. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman Hall, New York, pp 1–13

    Google Scholar 

  • Close PS, Shoemaker RC, Keim P (1989) Distribution of restriction site polymorphism within the chloroplast genome of the genusGlycine, subgenusSoja. Theor Appl Genet 77:768–776

    Google Scholar 

  • Crawford DJ (1990) Plant molecular systematics. Wiley, New York

    Google Scholar 

  • Crouse EJ, Mubumbila M, Stummann B, Bookjans G, Michalowski C, Bohnert H, Weil JH, Henningsen KW (1986) Divergence of chloroplast gene organization in three legumes:Pisum sativum, Vicia faba andPhaseolus vulgaris. Plant Mol Biol 7:143–149

    Google Scholar 

  • Delgado Saunas A (1985) Systematics of the genusPhaseolus (Leguminosae) in North and Central America. PhD thesis, University of Texas, Austin

    Google Scholar 

  • Delgado Salinas A (1988) Variation, taxonomy, domestication, and germplasm potentialities inPhaseolus coccineus. In: Gepts P (ed) Genetic resources ofPhaseolus beans. Kluwer, Dordrecht, the Netherlands, pp 441–463

    Google Scholar 

  • Delgado Salinas A, Bruneau A, Doyle JJ (1993) Chloroplast phylogenetic studies in New World Phaseolinae (Leguminosae:Papilionoideae:Phaseoleae). Syst Bot 18:6–17

    Google Scholar 

  • Doebley J (1992) Molecular systematics and crop evolution. In: Solus PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman Hall, New York, pp 202–222

    Google Scholar 

  • Dowling TE, Moritz C, Palmer JD (1990) Nucleic acids II: restriction site analysis. In: Hillis DM, Moritz C (eds) Molecular systematics. Sinauer, Sunderland, Mass., pp 250–317

    Google Scholar 

  • FAO (1980) Food balance sheets: 1975–1977 average and per capita food supplies, 1961–1965 average, 1967–1977. Food and Agriculture Organization. Rome

    Google Scholar 

  • Farris JS (1970) Methods for computing Wagner trees. Syst Zool 19:83–92

    Google Scholar 

  • Farris JS (1977) Phylogenetic analysis under Dollo's law. Syst Zool 26:77–88

    Google Scholar 

  • Feinberg AP, Vogelstein (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:9–13

    Google Scholar 

  • Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22:521–565

    Google Scholar 

  • Gepts P (1981) Hibridaciones interespecfficas para el mejoramiento dePhaseolus vulgaris. Internal seminar, SE-10-81, Centro Internacional de Agricultura Tropical, Cali, Colombia

    Google Scholar 

  • Gepts P (1990) Biochemical evidence bearing on the domestication ofPhaseolus beans. Econ Bot 44(3S):28–38

    Google Scholar 

  • Gepts P, Debouck DG (1991) Origin, domestication, and evolution of the common bean, Phaseolus vulgaris. In: Voysest O, Van Schoonhoven A (eds) Common beans: research for crop improvement. CAB, Oxon, UK, pp 7–53

    Google Scholar 

  • Gepts P, Osborn TC, Rashka K, Bliss FA (1986) Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): evidence for multiple centers of domestication. Econ Bot 40:451–468

    Google Scholar 

  • Gepts P, Llaca V, Nodari RO, Panella L (1992) Analysis of seed proteins, isozymes, and RFLPs for genetic and evolutionary studies inPhaseolus. In: Linskens H-F, Jackson JF (eds) Modern methods of plant analysis (new series): seed analysis. Springer, Berlin Heidelberg New York, pp 63–93

    Google Scholar 

  • Guo M, Lightfoot DA, Mok MC, Mok DWS (1991) Analyses ofPhaseolus vulgaris L. andP. coccineus Lam. hybrids by RFLP: preferential transmission ofP. vulgaris alleles. Theor Appl Genet 81:703–709

    Google Scholar 

  • Harris SA, Ingram R (1991) Chloroplast DNA and biosystematics: the effects of intraspecific diversity and plastid transmission. Taxon 40:393–412

    Google Scholar 

  • Hernandez Xolocotzi E, Miranda Colín S, Prwyer C (1959) El origen dePhaseolus coccineus L.darwinianus Hernandez X. & Miranda C. subspecies nova. Rev Soc Mex Hist Nat 20:99–121

    Google Scholar 

  • Hucl P, Scoles GJ (1985) Interspecific hybridization in the common bean: a review. HortScience 20:352–357

    Google Scholar 

  • Khairallah MM, Adams MW, Sears BB (1991) Mitochondrial genome size variation and restriction fragment length polymorphisms in threePhaseolus species. Theor Appl Genet 82:321–328

    Google Scholar 

  • Kloz J, Klozová E (1974) The protein euphaseolin in Phaseolinae —a chemotaxonomical study. Biol Plant 16:290–300

    Google Scholar 

  • LeQuesne WJ (1974) The uniquely evolved character concept and its cladistic applications. Syst Zool 18:201–205

    Google Scholar 

  • Maréchal R, Mascherpa J-M, Stainier F (1978) Etude taxonomique d'un groupe complexe d'espèces des genresPhaseolus etVigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l'analyse informatique. Boissiera 28:1–273

    Google Scholar 

  • del G (1865) Experiments on plant hybrids. In: Stern C, Sherwood ER (eds) The origin of genetics. W. H. Freeman, San Francisco, pp 1–48

    Google Scholar 

  • Mok DWS, Mok MC, Rabakoarihanta A (1978) Interspecific hybridization ofPhaseolus vulgaris withP. lunatus andP. acutifolius. Theor Appl Genet 52:209–215

    Google Scholar 

  • Mubumbila M, Gordon KJH, Crouse EJ, Burkard G, Weil JH (1983) Construction of the physical map of the chloroplast DNA ofPhaseolus vulgaris and localization of ribosomal and transfer genes. Gene 21:257–266

    Google Scholar 

  • Nodari RO, Koinange EMK, Kelly JD, Gepts P (1992) Towards an integrated linkage map of common bean. I. Development of genomic DNA probes and levels of restriction fragment length polymorphism. Theor Appl Genet 84:186–192

    Google Scholar 

  • Palmer JD (1983) Chloroplast DNA exists in two orientations. Nature 301:92–93

    Google Scholar 

  • Palmer JD (1985) Comparative organization of chloroplast genomes. Annu Rev Genet 19:325–354

    Google Scholar 

  • Palmer JD (1987) Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. Am Nat 130:S6-S29

    Google Scholar 

  • Palmer JD, Stein DB (1986) Conservation of chloroplast genome structure among vascular plants. Curr Genet 10:823–833

    Google Scholar 

  • Palmer JD, Thompson WF (1981) Clone banks of the mung bean, pea and spinach chloroplast genomes. Gene 15:21–26

    Google Scholar 

  • Palmer JD, Singh GP, Pillay DTN (1983) Structure and sequence evolution of three legume chloroplast DNAs. Mol Gen Genet 190:13–19

    Google Scholar 

  • Panella L, Gepts P (1992) Genetic relationships withinVigna unguiculata (L.) Walp. based on isozyme analyses. Genet Res Crop Evol 39:71–88

    Google Scholar 

  • Piñeiro D, Eguiarte E (1988) The origin and biosystematic status ofPhaseolus coccineus ssp.polyanthus: electrophoretic evidence. Euphytica 37:199–203

    Google Scholar 

  • Piper CV (1926) Studies in American Phaseolinae. Contrib US Nat Herb 22:663–701

    Google Scholar 

  • Rieseberg LH, Brunsfeld SJ (1992) Molecular evidence and plant introgression. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman Hall, New York, pp 151–176

    Google Scholar 

  • Rigby PWJ, Dieckman M, Rhodes C, Berg O (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nicktranslation with DNA polymerase. J Mol Biol 113:237–251

    Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schinkel C, Gepts P (1988) Phaseolin diversity in the tepary bean,Phaseolus acutifolius A. Gray. Plant Breed 101:292–301

    Google Scholar 

  • Schinkel C, Gepts P (1989) Allozyme variability in the tepary bean,Phaseolus acutifolius A. Gray. Plant Breed 102:182–195

    Google Scholar 

  • Schmit V (1992) Etude dePhaseolus polyanthus Greenman et autres taxons du complexePhaseolus coccineus L. PhD thesis, Faculté des Sciences Agronomiques de Gembloux, Belgium

    Google Scholar 

  • Schmit V, Debouck DG (1991) Observations on the origin ofPhaseolus polyanthus Greenman. Econ Bot 45:345–364

    Google Scholar 

  • Shii CT, Rabakoarihanta A, Mok MC, Mok DWS (1982) Embryo development in reciprocal crosses ofPhaseolus vulgaris andPhaseolus coccineus. Theor Appl Genet 62:59–64

    Google Scholar 

  • Singh SP, Gepts P, Debouck DG (1991) Races of common bean (Phaseolus vulgaris L., Fabaceae). Econ Bot 45:379–396

    Google Scholar 

  • Smartt J (1973) The possible status ofPhaseolus coccineus L. ssp.darwinianus Hdez X et Miranda C. as a distinct species and cultigen of the genusPhaseolus. Euphytica 22:424–426

    Google Scholar 

  • Soltis DE, Soltis PS, Milligan BG (1992) Intraspecific chloroplast DNA variation: systematic and phylogenetic implications. In:Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematic of plants. Chapman Hall, New York, pp 117–150

    Google Scholar 

  • Sullivan JG, Freytag G (1986) Predicting interspecific compatibilities in beans (Phaseolus) by seed protein electrophoresis. Euphytica 35:201–209

    Google Scholar 

  • Wall JR (1970) Experimental introgression in the genusPhaseolus. 1. Effect of mating systems on interspecific gene flow. Evolution 24:356–366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. R. Pring

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llaca, V., Delgado Salinas, A. & Gepts, P. Chloroplast DNA as an evolutionary marker in thePhaseolus vulgaris complex. Theoret. Appl. Genetics 88, 646–652 (1994). https://doi.org/10.1007/BF01253966

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01253966

Key words

Navigation