Skip to main content
Log in

Effect of different photoperiods on the diurnal rhythm of 5-methoxytryptamine in the pineal gland of golden hamsters (Mesocricetus auratus)

  • Full Papers
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

This study tested the photo-dependency of the rhythmic synthesis of 5-methoxytryptamine (5-MT) in the pineal gland of golden hamsters. After pargyline administration, pineal 5-methoxytryptamine and melatonin were measured by HPLC in male golden hamsters kept under short and long photoperiod. In both photoperiodic regimes, a clear 5-MT rhythm was observed which fitted a sinusoidal function with high values occuring during the day-time and low values occuring during the night-time. The duration of the low nighttime levels was clearly proportional to the length of the dark phase. A marked rhythm of melatonin synthesis was also seen with low daytime levels and high night-time values. An inverse relationship between 5-MT and melatonin levels was observed. Thus, after pargyline administration, the rhythms of 5-MT and melatonin in the pineal gland of golden hamsters are photoperiod-dependent and show a reciprocal relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brainard GC, Richardson BA, Petterborg LJ, Reiter RJ (1982) Pineal melatonin in Syrian hamsters: circadian and seasonal rhythms in animals maintained under laboratory and natural conditions. Neuroendocrinology 35: 342–348

    PubMed  Google Scholar 

  • Cahill GM, Besharse JC (1989) Retinal melatonin is metabolized in the eyes ofXenopus laevis. Proc Natl Acad Sci USA 86: 1098–1102

    PubMed  Google Scholar 

  • Czyba JC, Girod G, Durand N (1964) Sur l'antagonisme epiphyso-hypophysaire et les variations saisonnieres de la spermatogenese chez le hamster dore (Mesocricetus auratus). C R Soc Biol 158: 742–745

    Google Scholar 

  • Deguchi T, Axelrod J (1972) A sensitive assay for serotonin N-acetyltransferase activity in rat pineal. Anal Biochem 50: 174–179

    PubMed  Google Scholar 

  • Galzin AM, Eon MT, Esnaud H, Lee CR, Pevet P, Langer SZ (1988) Day-night rhythm of 5-methoxytryptamine biosynthesis in the pineal gland of golden hamster (Mesocricetus auratus). J Endocr 118: 389–397

    PubMed  Google Scholar 

  • Goldman MD (1983) The physiology of melatonin in mammals. Pineal Res Rev 1: 145–182

    Google Scholar 

  • Hadfield MG, Milio C, Narasimhachari N (1987) Simultaneous HPLC analysis of catecholamines and indoleamines in mouse brain tissue following acetate extraction and treatment with ascorbate oxidase. J Liquid Chromatogr 10: 2439–2446

    Google Scholar 

  • Heward CB, Hadley ME (1979) Structure-activity relationship of melatonin and related indoleamines. Life Sci 17: 1167–1178

    Google Scholar 

  • Hoffman R, Reiter RJ (1965) Pineal gland. Influence on gonads of male hamster. Science 148: 1609–1611

    PubMed  Google Scholar 

  • Jones RSG (1982) Tryptamine a neuromodulator or neurotransmitter in mammalian brain? Prog Neurobiol 19: 117–139

    PubMed  Google Scholar 

  • King T, Richardson A, Reiter RJ (1982) Regulation of rat pineal melatonin synthesis: effect of monoamine oxidase inhibition. Mol Cell Endocrinol 25: 327–338

    PubMed  Google Scholar 

  • King T, Steger RW, Richardson BA, Reiter RJ (1982) Interaction between pargyline monoamine oxidase inhibitor and beta-adrenergic receptors in the rat pineal gland. In: Reiter RJ (ed) Progress in clinical and biological research. The pineal gland andits hormones. Alan R Liss, New York, pp 95–100

    Google Scholar 

  • Klein DC, Weller JC (1970) Rapid light-induced decrease in pineal serotonin N-acetyl-transferase activity. Science 168: 979–980

    PubMed  Google Scholar 

  • Oxenkrug GF, McIntyre IM, Balon R, Jain AK, Appel D, McCauley RB (1986) Single dose of tranylcypromine increases human plasma melatonin. Biol Psychiatry 21: 1085–1089

    PubMed  Google Scholar 

  • Panke ES, Rollag MD, Reiter RJ (1979) Pineal melatonin concentrations in the Syrian hamster. Endocrinology 104: 194–197

    PubMed  Google Scholar 

  • Pévet P, Haldar-Misra C, Ocal T (1981) Effect of 5-methoxytryptophan and 5-methoxy-tryptamine on the reproductive system of the male golden hamster. J Neural Transm 51: 303–311

    PubMed  Google Scholar 

  • Pévet P (1983 a) The 5-methoxyindoles different from melatonin; their effects on the sexual axis. In: Axelrod J, Fraschini F, Velo GP (eds) The pineal gland and its endocrine role. Plenum, New York, pp 331–341

    Google Scholar 

  • Pévet P (1983 b) Is 5-methoxytryptamine a pineal hormone? Psychoneuroendocrinology 8: 61–73

    PubMed  Google Scholar 

  • Pévet P (1985) 5-methoxyindoles, pineal peptides and reproduction. In: Brown GM, Wainwright SD (eds) The pineal gland: endocrine aspects. Pergamon, Oxford, pp 81–102

    Google Scholar 

  • Pulchalski WG, Lynch R (1988) Daily melatonin injections affect the expression of circadian rhythmicity in Djungarian hamsters kept under long day photoperiod. Neuroendocrinology 48: 280–286

    PubMed  Google Scholar 

  • Raynaud F, Miguel JL, Vivien-Roels B, Masson-Pévet M, Pévet P (1989) The effect of 5- methoxytryptamine on golden hamster gonads is not a consequence of its acetylation into melatonin. J Endocr 121: 507–512

    PubMed  Google Scholar 

  • Reiter RJ (1980) Photoperiod, pineal and reproductive rhythms. In: Brambilla F, Rocagni D, de Weid D (eds) Progress in psychoneuroendocrinology. Elsevier, Amsterdam, pp 116–126

    Google Scholar 

  • Roberts AC, Martensz ND, Hastings MH, Herbert J (1985) Changes in photoperiod alter the daily rhythm of pineal melatonin content and hypothalamic endorphin content and the luteinizing hormone response to naloxone in the male Syrian hamster. Endocrinology 117: 141–148

    PubMed  Google Scholar 

  • Rollag MD (1982) Ability of tryptophan derivatives to mimic melatonin's action upon Syrian hamster reproductive system. Life Sci 31: 2699–2707

    PubMed  Google Scholar 

  • Snyder S, Axelrod J, Zweig M (1967) Circadian rhythm in the serotonin content of the rat pineal gland: regulating factors. J Pharmacol Exp Ther 158: 206–213

    PubMed  Google Scholar 

  • Skene DJ, Pevet P, Vivien-Roels B, Masson-Pevet M, Arendt J (1987) Effect of different photoperiods on concentrations of 5-methoxytryptophol and melatonin in the pineal gland of the Syrian hamster. J Endocr 114: 301–309

    PubMed  Google Scholar 

  • Vanecek J, Jansky L, Illnerova H, Hoffman K (1984) Pineal melatonin in hibernating and aroused golden hamsters (Mesocricetus auratus). Comp Biochem Physiol 77 A: 759–762

    Google Scholar 

  • Warsh JJ, Coscina DV, Dodse DD, Chan PW (1979) Dependance of brain tryptamine formation on tryptophan availability. J Neurochem 32: 1191–1196

    PubMed  Google Scholar 

  • Weil-Malherbe H (1976) Amine formation from L-trypophan in brain slices. J Neurochem 27: 29–834

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raynaud, F., Pévet, P. Effect of different photoperiods on the diurnal rhythm of 5-methoxytryptamine in the pineal gland of golden hamsters (Mesocricetus auratus). J. Neural Transmission 83, 235–242 (1991). https://doi.org/10.1007/BF01253393

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01253393

Keywords

Navigation