Skip to main content
Log in

The relationship of free and conjugated catecholamines in plasma and cerebrospinal fluid in cerebral and meningeal disease

  • Original Papers
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The concentration of free and conjugated norepinephrine (NE), epinephrine (E) and dopamine (DA) were measured by a modified radioenzymatic assay in the plasma and in the cerebrospinal fluid (CSF) of 45 patients with normal and in 21 patients with disturbed blood-CSF barriers. In patients with an undisturbed blood-CSF barrier the free NE and E in CSF were 128±45 ng/l and 27±20 ng/l (mean values±S.E.), respectively, and represented about 50 % of the average plasma values. Mean DA was not different in plasma (47±22 ng/l) and in CSF (41±19 ng/l). Both in plasma and in CSF, considerable higher free catecholamine (CA) levels were measured in patients with dysfunction of the blood-CSF barrier. In one patient with bacterial meningitis twofold higher concentrations of free NE and DA in CSF as compared with plasma were detectable. Sulfate conjugates of catecholamines are predominant in plasma and CSF.

The contribution of conjugated CA to total CA in plasma from patients with normal blood-CSF barrier averaged 69.7 %, 63.1 % and 98.1 % for NE, E and DA, respectively and was significantly lower in the CSF (p<0.001). In patients with disturbed blood-CSF barrier, the increases of conjugated CA were more pronounced in CSF than in plasma. Further, the contribution of conjugated NE and E to total NE and E in CSF was not only increased in patients with bacterial meningitis, but also in patients with renal insufficiency compared to the “control” patients (p<0.02 and p<0.001 resp.). Free and conjugated NE, E and DA in the plasma and CSF were related significantly (p<0.01 resp.) with stronger correlation for conjugated CA (p<0.001 resp.). These results together with findings in the literature, suggest that there is little or no rostral-caudal gradient in CSF CA conjugate concentrations and that even in patients with intact blood-CSF barrier plasma conjugated CA concentrations influence those in CSF. Thus only free CA levels in CSF may reflect the central adrenergic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. J., Weinshilboum, R. M.: Phenolsulfotransferase in human tissue. Radiochemical enzymatic assay and biochemical properties. Clin. Chim. Acta103, 79–80 (1980).

    PubMed  Google Scholar 

  • Buu, N. T., Duhaime, J., Kuchel, O., Genest, J.: The convulsive effects of dopamine sulfate conjugates in rat brain. Life Sci.29, 2311–2316 (1981).

    PubMed  Google Scholar 

  • Bosak, J., Knoll, E., Ratge, D., Wisser, H.: Single-isotope enzymatic derivative method for measuring catecholamines in human plasma. J. Clin. Chem. Clin. Biochem. 18, 413–421 (1980).

    PubMed  Google Scholar 

  • Claustre, J., Serusclat, P., Peyrin, L.: Glucuronide and sulfate catecholamine conjugates in rat and human plasma. J. Neural Transmission56, 265–278 (1983).

    Google Scholar 

  • Dencker, S. J., HÄggendal, J., Ilves-HÄggendal, M.: Presence of free and conjugated noradrenaline in human cerebrospinal fluid. Acta Physiol. Scand.69, 140–146 (1967).

    PubMed  Google Scholar 

  • Jenner, W. M., Rose, F. A.: Studies on the sulphation of 3, 4-dihydroxyphenyl-ethlamine (dopamine) and related compounds by rat tissues. Biochem. J.135, 109–114 (1973).

    PubMed  Google Scholar 

  • Johnson, G. A., Baker, C. A., Smith, R. T.: Radioenzymatic assay of sulfate conjugates of catecholamines and dopa in plasma. Life Sci.26, 1591–1598 (1980).

    PubMed  Google Scholar 

  • Karoum, F.: Presence, distribution and pharmacology of conjugated catecholamines in the rat spinal cord. Brain Res.259, 251–266 (1983).

    Google Scholar 

  • Klensch, H., Gött, U.: Liquor-Adrenalin und -Noradrenalin im Operationsstress. Klin. Wschr.48, 853–855 (1970).

    PubMed  Google Scholar 

  • Kuchel, O., Buu, N. T., Hamet, P., Larochelle, P., Bourque, M., Genest, J.: Essential hypertension with low conjugated catecholamines imitates pheochromocytoma. Hypertension3, 347–351 (1981).

    PubMed  Google Scholar 

  • Lake, C. R., Ziegler, M. G., Kopin, I. J.: Use of plasma norepinephrine for evaluation of sympathetic neuronal function in man. Life Sci.18, 1315–1326 (1976).

    PubMed  Google Scholar 

  • Manshardt, J., Wurtmann, R. J.: Daily rhythm in the noradrenaline content of rat hypothalamus. Nature (London)217, 574–575 (1968).

    Google Scholar 

  • Meyer, J. S., Stoica, E., Parscu, I., Shimazu, K., Hartmann, A.: Catecholamine concentrations in CSF and plasma of patients with cerebral infarction and hemorrhage. Brain96, 277–288 (1973).

    PubMed  Google Scholar 

  • Peuler, J. D., Johnson, G. A.: Simultaneous single isotope radioenzymatic assay of plasma norepinephrine, epinephrine and dopamine. Life Sci.21, 625–636 (1977).

    PubMed  Google Scholar 

  • Ratge, D., Knoll, E., Diener, U., Hadjidimos, A., Wisser, H.: Altered circadian rhythm of catecholamines in patients with apallic syndrome. Experientia37, 1207–1209 (1981).

    PubMed  Google Scholar 

  • Ratge, D., Baumgardt, G., Knoll, E., Wisser, H.: Plasma free and conjugated catecholamines in diagnosis and localisation of pheochromocytoma. Clin. Chim. Acta132, 229–243 (1983).

    PubMed  Google Scholar 

  • Reiber, H.: The discrimination between different blood-CSF barrier dysfunctions and inflammatory reactions of the CNS by a recent evaluation graph for the protein profile of cerebrospinal fluid. J. Neurol.224, 89–99 (1980).

    PubMed  Google Scholar 

  • Renskers, K. J., Feor, K. D., Roth, J. A.: Sulfation of dopamine and other biogenic amines by human brain phenolsulfotransferase. J. Neurochem.34, 1362–1368 (1980).

    PubMed  Google Scholar 

  • Reis, D. J., Wurtmann, R. J.: Diurnal changes in brain noradrenaline. Life Sci.7, 91–98 (1968).

    Google Scholar 

  • Roth, J. A., Rivett, A. J.: Does sulfate conjugation contribute to the metabolic inactivation of catecholamines in humans? Biochem. Pharmac.31, 3017–3021 (1982).

    Google Scholar 

  • Sato, S., Suziki, T.: Anatomical mapping of the cerebral neovi vasorum in the human brain. J. Neurosurg.43, 559–568 (1975).

    PubMed  Google Scholar 

  • Scheinin, M., Seppala, T., Koulo, M., Linnoila, M.: Determination of conjugated dopamine in cerebrospinal fluid from humans and non-humans primates with high performance liquid chromatography using electrochemical detection. Acta pharmacol. et toxicol.55, 88–94 (1984).

    Google Scholar 

  • Sharpless, N. S., Tyce, G. M., Thal, L. J., Waltz, J. M., Tabaddor, K., Wolfxon, L. I.: Free and conjugated dopamine in human ventricular fluid. Brain Res.217, 107–118 (1981).

    PubMed  Google Scholar 

  • Sinha, J. N., Deitl, H., Philippu, A.: Effect of a fall of blood pressure on the release of catecholamines in the hypothalamus. Life Sci.26, 1751–1760 (1980).

    PubMed  Google Scholar 

  • Tyce, G. M., Sharpless, N. S., Kerr, F. W., Muenter, M. D.: Dopamine conjugate in cerebrospinal fluid. J. Neurochem.34, 210–212 (1980).

    PubMed  Google Scholar 

  • Wang, P.-C., Buu, N. T., Kuchel, O., Genest, J.: Conjugation patterns of endogenous plasma catecholamines in human and rat. J. Lab. Clin. Med.101, 141–151 (1983).

    PubMed  Google Scholar 

  • Weil-Malherbe, H., Axelrod, J., Tomchick, R.: Blood-brain barrier for adrenaline. Science129, 1226–1227 (1959).

    PubMed  Google Scholar 

  • Ziegler, M. G., Lake, C. R., Kopin, I. J.: Norepinephrine in cerebrospinal fluid. Brain Res.108, 436–440 (1976a).

    PubMed  Google Scholar 

  • Ziegler, M. G., Lake, C. R., Wood, J. H., Brooks, B. R., Ebert, M. H.: Relationship between norepinephrine in blood and cerebrospinal fluid in the presence of a blood-cerebrospinal fluid barrier for norepinephrine. J. Neurochem.28, 677–679 (1976b).

    Google Scholar 

  • Ziegler, M. G., Lake, C. R., Wood, J. H., Ebert, M. H.: Circadian rhythm in cerebrospinal noradrenaline of man and monkey. Nature264, 656–658 (1976c).

    PubMed  Google Scholar 

  • Ziegler, M. G., Lake, C. R., Wood, J. H., Brooks, B. R.: Relationship between cerebrospinal fluid norepinephrine and blood pressure in neurologic patients. Clin. Exp. Hypertension2, 995–1008 (1980a).

    Google Scholar 

  • Ziegler, M. G., Lake, C. R., Wood, J. H., Ebert, M. H.: Norepinephrine in cerebrospinal fluid: basic studies, effects of drugs and disease. In: Neurobiology of the Cerebrospinal Fluid (Wood, J. H., ed.), Vol. 1, pp. 141–149. New York: Plenum Press. 1980b.

    Google Scholar 

  • Zivin, J. A., Raid, J. L., Saaverda, J. M., Kopin, I. J.: Quantitative localization of biogenic amines in spinal cord. Brain Res.99, 293–301 (1975).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratge, D., Bauersfeld, W. & Wisser, H. The relationship of free and conjugated catecholamines in plasma and cerebrospinal fluid in cerebral and meningeal disease. J. Neural Transmission 62, 267–284 (1985). https://doi.org/10.1007/BF01252241

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01252241

Key words

Navigation