Skip to main content
Log in

Factors influencing monoamine metabolites and tryptophan in patients with alcohol dependence

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Cerebrospinal fluid 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA) and tryptophan (TRY) were measured in 36 female patients with alcohol dependence defined by strict operational criteria. Results were compared with a control group of 32 women hospitalized in a neurological unit for peripheral diseases. Several disorders presumably interfering with monoamine metabolism were carefully excluded and diet, psychomotor activity, diurnal variation, nutritional state and similar nonspecific variables controlled in both groups.

Only 5-HIAA was found to be decreased in dependent patients as compared to controls. Since 5-HIAA-but neither HVA nor TRY-correlated with body height in both groups, we eliminated its effect by analysis of covariance: as a result 5-HIAA difference became statistically significant but the other two biochemical measures remained unchanged.

A multivariate regression analysis with five independent clinical variables (body height, age, weight, years of alcohol abuse and days of abstinence) yielded significant determination coefficient R2 only for 5-HIAA. Regarding its components only body height and days of abstinence proved to be significantly correlated with 5-HIAA. Severity of withdrawal symptoms assessed on a rating scale in 14 patients with 4 days or less of abstinence correlated marginally with HVA but not with 5-HIAA. This latter metabolite decreased only in patients with 5 days or more of abstinence; the difference between 5-HIAA levels of short-term and longterm abstinence subgroups was statistically highly significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghajanian, G. K., Wang, R. Y. Physiology and pharmacology of central serotonergic neurons. In: Psychopharmacology, a Generation of Progress (Lipton, M. A., DiMascio, A., Killam, K. F., eds.), pp. 171–183. New York: Raven Press. 1978.

    Google Scholar 

  • Ahtee, L., Eriksson, K. Regional distribution of brain serotonin in rat strains selected for their alcohol intake. Ann. N.Y. Acad. Sci.215, 126–134 (1973).

    Google Scholar 

  • Aizenstein, M. L., Korf, J. On the elimination of centrally formed 5-HIAA by cerebrospinal fluid and urine. J. Neurochem.32, 1227–1233 (1979).

    Google Scholar 

  • Åsberg, M., Bertilsson, L. Serotonin in depressive illness, studies of CSF 5-HIAA. In: Neuropsychopharmacology (Saletu, B., Berner, P., Hollister, L. E., eds.), pp. 105–115. Oxford: Pergamon Press. 1979.

    Google Scholar 

  • Badawy, A. A., Evans, M. Alcohol and tryptophan metabolism. J. Alcohol.9, 97–116 (1974).

    Google Scholar 

  • Ballenger, J. C., Goodwin, F. K., Major, L. F., Brown, G. L. Alcohol and central serotonin metabolism in man. Arch. Gen. Psychiat.36, 224–227 (1979).

    Google Scholar 

  • Banki, C. M. 5-hydroxytryptamine content of the whole blood in psychiatric illness and alcoholism. Acta psychiat. Scand.57, 232–238 (1978).

    Google Scholar 

  • Berger, P. A., Faull, K. F., Kilkowski, J. Cerebrospinal fluid monoamine metabolites in depression and schizophrenia. Amer. J. Psychiat.137, 174–180 (1980).

    Google Scholar 

  • Cochran, E., Robins, E., Grote, S. Regional serotonin levels in brain, a comparison of depressive and alcoholic suicides with controls. Biol. Psychiat.11, 283–294 (1976).

    Google Scholar 

  • Curzon, G., Marsden, C. A. Metabolism of a tryptophan load in the hypothalamus and other brain regions. J. Neurochem.25, 251–256 (1975).

    Google Scholar 

  • Curzon, G. Transmitter amines in brain disease. In: Biochemistry and Neurological Disease (Davison, A. N., ed.). Oxford: Blackwell. 1976.

    Google Scholar 

  • Curzon, G., Kantamaneni, B. D., van Boxel, P. Substances related to serotonin in plasma and in lumbar and ventricular CSF of psychiatric patients. Acta psychiat. Scand.61, suppl. 280, 3–20 (1980).

    Google Scholar 

  • Denckla, W. D., Dewey, H. K. The determination of tryptophan in plasma, liver and urine. J. Lab. Clin. Med.69, 160–169 (1967).

    Google Scholar 

  • Ellingboe, J. Effect of alcohol on neurochemical processes. In: Psychopharmacology, a Generation of Progress (Lipton, M. A., DiMascio, A., Killam, K. F., eds.), pp. 1653–1664. New York: Raven Press. 1978.

    Google Scholar 

  • Gottfries, C. G., Oreland, L., Wiberg, A., Winblad, B. Lowered MAO activity in brain from alcoholic suicides. J. Neurochem.25, 667–673 (1975).

    Google Scholar 

  • Keeler, M. H., Taylor, C. I., Miller, W. C. Are all recently detoxified alcoholics depressed? Amer. J. Psychiat.136, 586–588 (1979).

    Google Scholar 

  • Kemerer, V. F., Lichtenfeld, K. M., Koch, T. R. A column Chromatographie method for the determination of 5-HT (serotonin) and 5-HIAA in cerebrospinal fluid. Clin. Chim. Acta92, 81–85 (1979).

    Google Scholar 

  • Knell, A. J., Davidson, A. R., Willians, R. Dopamine and serotonin metabolism in hepatic encephalopathy. Brit. med. J.1, 549–551 (1974).

    Google Scholar 

  • Körösi, J. Studies with 5 H-2, 3-benzodiazepines. Ther. Hung.23, 4–8 (1975).

    Google Scholar 

  • Mena, M. A., Herrero, E. Monoamine metabolism in rat brain regions following long-term alcohol treatment. J. Neural Transm.47, 227–236 (1980).

    Google Scholar 

  • Oreland, L. MAO activity and affective illness. Acta psychiat. Scand.61, suppl. 280, 41–47 (1980).

    Google Scholar 

  • Pickett, R. A., Collins, A. C. Use of genetic analysis to test the potential role of serotonin in alcohol preference. Life Sci.17, 1291–1296 (1975).

    Google Scholar 

  • van der Poel, F. W., van Praag, H. M., Korf, J. Evidence for a probenecidsensitive transport system of acid monoamine metabolites from the spinal subarachnoid space. Psychopharmacol.52, 35–40 (1977).

    Google Scholar 

  • Post, R. M., Goodwin, F. K. Studies of CSF amine metabolites in depressed patients, conceptual problems and theoretical implications. In: The Psychobiology of Depression (Mendels, J., ed.), pp. 47–67. New York: Spectrum Publ. 1975.

    Google Scholar 

  • van Praag, H. M. Depression and Schizophrenia, p. 81. New York: Spectrum Publ. 1977.

    Google Scholar 

  • van Praag, H. M. Central monoamine metabolism in depression. Comprehens. Psychiat.21, 30–54 (1980).

    Google Scholar 

  • Reis, J. A possible role of central noradrenergic neurons in withdrawal states from alcohol. Ann. N.Y. Acad. Sci.215, 249–252 (1973).

    Google Scholar 

  • Rolf, R. H., Matz, D. R., Brune, G. G. Serotoninstoffwechsel bei chronischen Alkoholikern. Experientia34, 74–75 (1978).

    Google Scholar 

  • Spitzer, R. L., Williams, J. B. W., Skodol, A. E. DSM-III. The major achievements and an overview. Amer. J. Psychiat.137, 151–164 (1980).

    Google Scholar 

  • Stahl, S. M. The human platelet. Arch. Gen. Psychiat.34, 509–516 (1977).

    Google Scholar 

  • Takahashi, S., Yamane, H., Kondo, H., Tani, N. CSF monoamine metabolites in alcoholism, a comparative study with depression. Pol. Psychiat. Neurol. Jap.28, 347–354 (1974).

    Google Scholar 

  • Takahashi, S., Tani, N., Yamane, H. MAO activity in blood platelets in alcoholics. Fol. Psychiat. Neurol. Jap.30, 455–462 (1976).

    Google Scholar 

  • Truitt, E. B. A biogenic amine hypothesis for alcohol tolerance. Ann. N.Y. Acad. Sci.215, 177–182 (1973).

    Google Scholar 

  • Weissman, M. M., Myers, J. K. Clinical depression in alcoholism. Amer. J. Psychiat.137, 372–373 (1980).

    Google Scholar 

  • Westerink, B. H. C., Korf, J. Determination of nanogram amounts of HVA in the central nervous system with a rapid semiautomated fluorometric method. Biochem. Med.12, 106–115 (1975).

    Google Scholar 

  • Wiberg, A., Wahlström, G., Oreland, L. Brain monoamine oxidase activity after chronic ethanol treatment of rats. Psychopharmacol.52, 111–113 (1977).

    Google Scholar 

  • Young, S. N., Lal, S., Sourkes, S. Relationship between tryptophan in serum, CSF, and 5-HIAA in CSF of man, effect of cirrhosis of liver and probenecid. J. Neurol. Neurosurg. Psychiat.38, 322–331 (1975).

    Google Scholar 

  • Young, S. N., Etienne, P., Sourkes, S. Relationship between rat brain and cisternal CSF tryptophan concentration. J. Neurol. Neurosurg. Psychiat.39, 233–243 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banki, C.M. Factors influencing monoamine metabolites and tryptophan in patients with alcohol dependence. J. Neural Transmission 50, 89–101 (1981). https://doi.org/10.1007/BF01249132

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01249132

Keywords

Navigation