Skip to main content
Log in

Amantadine and the glutamate hypothesis of schizophrenia Experiences in the treatment of neuroleptic malignant syndrome

  • Short Communications
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

Amantadine was introduced for the pharmacological management of neuroleptic malignant syndrome (NMS) because of its beneficial effects in Parkinson's disease which were attributed to dopaminomimetic properties. While the dopaminomimetic effects of amantadine are weak under experimental conditions, recent studies have confirmed that amantadine is an antagonist at the N-methyl-D-aspartate (NMDA) type of the glutamate receptor. Amantadine has psychotomimetic properties in patients with Parkinson's disease and normal controls. Two of four patients who received amantadine for NMS suffered an exacerbation of their psychiatric illness. Our observations support the glutamate hypothesis of schizophrenia which suggests that reduced glutamatergic transmission causes a relative dopaminergic excess in the basal ganglia and the limbic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Addonizio G, Susman VL, Roth SD (1987) Neuroleptic malignant syndrome: review and analysis of 115 cases. Biol Psychiatry 22: 1004–1020

    Google Scholar 

  • Allen RM (1983) Role of amantadine in the management of neuroleptic-induced extrapyramidal syndromes: overview and pharmacology. Clin Neuropharmacol 6 [Suppl 1]: S 64–73

    Google Scholar 

  • Amdurski S, Radwan M, Levi A, Elizur A (1983) A therapeutic trial of amantadine in haloperidol-induced malignant neuroleptic syndrome. Curr Ther Res 33: 225–229

    Google Scholar 

  • Bormann J (1989) Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels. Eur J Pharmacol 166: 591–592

    Google Scholar 

  • Brown F, Redfern PH (1976) Studies on the mechanism of action of amantadine. Br J Pharmacol 58: 561–567

    Google Scholar 

  • Browne RG (1982) Discriminative stimulus properties of phencyclidine. In: Colpaert FC, Slangen JL (eds) Drug discrimination: applications in CNS pharmacology. Elsevier Biomedical Press, Amsterdam, pp 109–122

    Google Scholar 

  • Casey DA (1987) Electroconvulsive therapy in the neuroleptic malignant syndrome. Convulsive Ther 3: 278–283

    Google Scholar 

  • Chayasirisobhon S, Cullis P, Veeramasuneni RR (1983) Occurrence of neuroleptic malignant syndrome in a narcoleptic patient. Hosp Commun Psychiatry 34: 548–550

    Google Scholar 

  • Chen HSV, Pellegrini JW, Aggarwal SK, Lei SZ, Warach S, Jensen FE, Lipton SA (1992) Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci 12: 4427–4436

    Google Scholar 

  • Davies WL, Grunert RR, Haff RF, McGahen JW, Neumayer EM, Paulshock M, Watts JC, Wood TR, Hermann EC, Hoffmann CE (1964) Antiviral activity of 1-adamantanamine (amantadine). Science 144: 862–863

    Google Scholar 

  • DiMascio A, Bernardo DL, Greenblatt DJ, Marder JE (1976) A controlled trial of amantadine in drug-induced extrapyramidal disorders. Arch Gen Psychiatry 33: 599–602

    Google Scholar 

  • Flaherty JA, Bellur SN (1981) Mental side effects of amantadine therapy: its spectrum and characteristics in a normal population. J Clin Psychiatry 42: 344–345

    Google Scholar 

  • Gangadhar BN, Desai NG, Channabasavanna SM (1984) Amantadine in the neuroleptic malignant syndrome. J Clin Psychiatry 45: 526

    Google Scholar 

  • Gelenberg AJ, Mandel MR (1975) Catatonic reactions to high-potency neuroleptic drugs. Arch Gen Psychiatry 34: 947–950

    Google Scholar 

  • Gianutsos G, Chute S, Dunn JP (1985) Pharmacological changes in dopaminergic systems induced by long-term administration of amantadine. Eur J Pharmacol 110: 357–361

    Google Scholar 

  • Granato JE, Stern BJ, Ringel A, Karim AH, Krumholz A, Coyle J, Adler S (1983) Neuroleptic malignant syndrome: successful treatment with dantrolene and bromocriptine. Ann Neurol 14: 89–90

    Google Scholar 

  • Gruen RJ, Roth RH, Bunney BS, Moghadam B (1990) Increase in striatal dopamine release following local perfusion of the NMDA receptor antagonist 2-amino-5-phosphono-pentanoic acid. Soc Neurosci Abstr 16: 679

    Google Scholar 

  • Hamburg P, Weilburg JB, Cassem NH, Cohen L, Brown S (1986) Relapse of neuroleptic malignant syndrome with early discontinuation of amantadine therapy. Compr Psychiatry 27: 272–275

    Google Scholar 

  • Hausner RS (1980) Amantadine-associated recurrence of psychosis. Am J Psychiatry 137: 240–242

    Google Scholar 

  • Heikkila RE, Cohen G (1972) Evaluation of amantadine as a releasing agent or uptake blocker for3H-dopamine in rat brain slices. Eur J Pharmacol 20: 156–160

    Google Scholar 

  • Henderson VW, Wooten GF (1981) Neuroleptic malignant syndrome: a pathogenetic role for dopamine reeptor blockade? Neurology 31: 132–137

    Google Scholar 

  • Hermesh H, Huberman M, Radvan H, Kott E (1984) Recurrent neuroleptic malignant syndrome due to tiapride and haloperidol: the possible role of D-2 dopamine receptors. J Nerv Ment Dis 172: 692–695

    Google Scholar 

  • Hermesh H, Sirota P, Eviatar J (1989) Recurrent neuroleptic malignant syndrome due to haloperidol and amantadine. Biol Psychiatry 25: 962–965

    Google Scholar 

  • Imperato A, Scrocco MG, Bacchi S, Angelucci L (1990) NMDA receptors and in vivo dopamine release in the nucleus accumbens and caudatus. Eur J Pharmacol 187: 555–556

    Google Scholar 

  • Itil T, Keskiner A, Kiremitci N, Holden JMC (1967) Effect of phencyclidine in chronic schizophrenics. Can Psychiatr Assoc J 12: 209–212

    Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148: 1301–1308

    Google Scholar 

  • Karobath ME (1974) Amantadine and D-145, an amantadine derivative, do not effect dopamine sensitive adenylate cyclase from the caudate-putamen of the rat brain. Eur J Pharmacol 28: 376–378

    Google Scholar 

  • Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmüller B (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 20: 379–382

    Google Scholar 

  • Kornhuber J, Kornhuber ME (1986) Presynaptic dopaminergic modulation of cortical input to the striatum. Life Sci 39: 669–674

    Google Scholar 

  • Kornhuber J, Streifler M (1992) Adamantanamine. In: Riederer P, Laux G, Pöldinger W (Hrsg) Neuro-Psychopharmaka, Bd 6. Springer, Wien New York, S 59–76

    Google Scholar 

  • Kornhuber J, Bormann J, Retz W, Hübers M, Riederer P (1989 a) Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur J Pharmacol 166: 589–590

    Google Scholar 

  • Kornhuber J, Mack-Burkhardt F, Riederer P, Hebenstreit GF, Reynolds GP, Andrews HB, Beckmann H (1989 b) [3H]MK-801 binding sites in postmortem brain regions of schizophrenic patients. J Neural Transm 77: 231–236

    Google Scholar 

  • Kornhuber J, Riederer P, Beckmann H (1990) The dopaminergic and glutamatergic systems in schizophrenia. In: Bunney WE, Hippius H, Laakmann G, Schmauss M (eds) Neuropsychopharmacology, vol 2. Proceedings of the XVIth C.I.N.P. Congress. Springer, Berlin Heidelberg New York Tokyo, pp 714–720

    Google Scholar 

  • Kornhuber J, Bormann J, Hübers M, Rusche K, Riederer P (1991) Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDA-receptor-gated ion channel: a human postmortem brain study. Eur J Pharmacol [Mol Pharmacol Sect] 206: 297–300

    Google Scholar 

  • Lazarus A (1985) Neuroleptic malignant syndrome and amantadine withdrawal. Am J Psychiatry 142: 142

    Google Scholar 

  • Lew T, Tollefson G (1983) Chlorpromazine-induced neuroleptic malignant syndrome and its response to diazepam. Biol Psychiatry 18: 1441–1446

    Google Scholar 

  • Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R (1959) Study of a new schizophrenomimetic drug — Sernyl. Arch Neurol Psychiat 81: 363–369

    Google Scholar 

  • Maj J, Sowinska H, Baran L (1972) The effect of amantadine on motor activity and catalepsy in rats. Psychopharmacologia (Berl) 24: 296–307

    Google Scholar 

  • McCarron MM, Boettger ML, Peck JJ (1982) A case of neuroleptic malignant syndrome successfully treated with amantadine. J Clin Psychiatry 43: 381–382

    Google Scholar 

  • Mercuri NB, Stratta F, Calabresi P, Bernardi G (1991) Nomifensine but not amantadine increases dopamine-induced responses on rat substantia nigra zona compacta neurons. Neurosci Lett 131: 145–148

    Google Scholar 

  • Nestelbaum Z, Siris SG, Rifkin A, Klar H, Reardon GT (1986) Exacerbation of schizophrenia associated with amantadine. Am J Psychiatry 143: 1170–1171

    Google Scholar 

  • Osborne NN, Beale R, Golombiowska-Nikitin K, Sontag K-H (1982) The effect of memantine on various neurobiological processes. Arzneimittelforschung/Drug Res 32: 1246–1255

    Google Scholar 

  • Pacifici GM, Nardini M, Ferrari P, Latini R, Fieschi C, Morselli PL (1976) Effect of amantadine on drug-induced parkinsonism: relationship between plasma levels and effect. Br J Clin Pharmacol 3: 883–889

    Google Scholar 

  • Papeschi R (1974) Amantadine may stimulate dopamine and noradrenaline receptors. Neuropharmacology 13: 77–83

    Google Scholar 

  • Parkes D (1974) Amantadine. Adv Drug Res 8: 11–81

    Google Scholar 

  • Parkes JD, Zilkha KJ, Calver DM, Knill-Jones RP (1970) Controlled trial of amantadine hydrochloride in Parkinson's disease. Lancet i: 259–262

    Google Scholar 

  • Pope HG, Keck PE, McElroy SL (1986) Frequency and presentation of neuroleptic malignant syndrome in a large psychiatric hospital. Am J Psychiatry 143: 1227–1233

    Google Scholar 

  • Rao TS, Kim HS, Lehmann J, Martin LL, Wood PL (1990) Interactions of phencyclidine receptor agonist MK-801 with dopaminergic system: regional studies in the rat. J Neurochem 54: 1157–1162

    Google Scholar 

  • Riederer P, Lange KW, Kornhuber J, Danielczyk W (1991) Pharmacotoxic psychosis after memantine in Parkinson's disease. Lancet 338: 1022–1023

    Google Scholar 

  • Rojtman M, Apter E, Lahav S, Tiano S (1981) Treatment of neuroleptic malignant syndrome with amantadine. Harefuah 100: 333

    Google Scholar 

  • Sanger DJ, Terry P, Katz JL (1992) Memantine has phencyclidine-like but not cocaine-like discriminative stimulus effects in rats. Behav Pharmacol 3: 265–268

    Google Scholar 

  • Scatton B, Cheramy A, Besson MJ, Glowinski J (1970) Increased synthesis and release of dopamine in the striatum of the rat after amantadine treatment. Eur J Pharmacol 13: 131–133

    Google Scholar 

  • Schwab RS, England AC, Poskanzer DC, Young RR (1969) Amantadine in the treatment of Parkinson's disease. JAMA 208: 1168–1170

    Google Scholar 

  • Simpson DM, Davis GC (1984) Case report of neuroleptic malignant syndrome associated with withdrawal from amantadine. Am J Psychiatry 141: 796–797

    Google Scholar 

  • Stetter H, Mayer J, Schwarz M, Wulff K (1960) Beiträge zur Chemie der Adamantyl-(1)-Derivate. Chem Ber 93: 226–230

    Google Scholar 

  • Stone TW (1977) Evidence for a non-dopaminergic action of amantadine. Neurosci Lett 4: 343–346

    Google Scholar 

  • Stoof JC, Booij J, Drukarch B, Wolters EC (1992) The anti-parkinsonian drug amantadine inhibits the N-methyl-D-aspartic acid-evoked release of acetylcholine from rat neostriatum in a non-competitive way. Eur J Pharmacol 213: 439–443

    Google Scholar 

  • Tollefson GD, Garvey MJ (1984) The neuroleptic malignant syndrome and central dopamine metabolites. J Clin Psychopharmacol 4: 150–153

    Google Scholar 

  • Toru M, Matsuda O, Makiguchi K, Sugano K (1981) Neuroleptic malignant syndrome-like state following a withdrawal of antiparkinsonian drugs. J Nerv Ment Dis 169: 324–327

    Google Scholar 

  • Von Voigtländer PF, Moore KE (1971) Dopamine: release from the brain in vivo by amantadine. Science 174: 408–410

    Google Scholar 

  • Weller M, Kornhuber J (1992) Clozapine rechallenge after an episode of “neuroleptic malignant syndrome”. Br J Psychiatry 161: 855–856

    Google Scholar 

  • Wesemann W, Dette-Wildenhahn G, Fellehner H (1979) In vitro studies on the possible effects of 1-aminoadamantanes on the serotonergic system in M. Parkinson. J Neural Transm 44: 263–285

    Google Scholar 

  • Wesemann W, Sturm G, Fünfgeld EW (1980) Distribution and metabolism of the potential anti-parkinson drug memantine in the human. J Neural Transm [Suppl 16]: 143–148

    Google Scholar 

  • Wilcox J (1985) Psychoactive properties of amantadine. J Psychoactive Drugs 17: 51–53

    Google Scholar 

  • Wilcox JA, Tsuang J (1990) Psychological effects of amantadine on psychotic subjects. Pharmacopsychiatry 23: 144–146

    Google Scholar 

  • Woo J, Teoh R, Vallence-Owen J (1986) Neuroleptic malignant syndrome successfully treated with amantadine. Postgrad Med J 62: 809–810

    Google Scholar 

  • Zubenko G, Pope HG (1983) Management of a case of neuroleptic malignant syndrome with bromocriptine. Am J Psychiatry 140: 1619–1620

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornhuber, J., Weller, M. Amantadine and the glutamate hypothesis of schizophrenia Experiences in the treatment of neuroleptic malignant syndrome. J. Neural Transmission 92, 57–65 (1993). https://doi.org/10.1007/BF01245162

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01245162

Keywords

Navigation