Skip to main content
Log in

A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus

  • Published:
Inventiones mathematicae Aims and scope

Summary

The group of area preserving diffeomorphisms of the annulus acts on its Lie algebra, the globally Hamiltonian vectorfields on the annulus. We consider a certain Hilbert space completion of this group (thinking of it as a group of unitary operators induced by the diffeomorphisms), and prove that the projection of an adjoint orbit onto a “Cartan” subalgebra isomorphic toL 2 ([0, 1]) is an infinite-dimensional, weakly compact, convex set, whose extreme points coincide with the orbit, through a certain function, of the “permutation” semigroup of measure preserving transformations of [0, 1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [Akh] Akhiezer, N.: The Classical Moment Problem. (Univ. Math. Monogr.) Edinburgh London: Oliver & Boyd 1965

    Google Scholar 

  • [A1] Alpern, S.: Approximation to and by measure preserving homeomorphisms. J. Lond. Math. Soc.18, 305–315 (1978)

    Google Scholar 

  • [AP] Atiyah, M.F., Pressley, A.N.: Convexity and loop groups. In: Artin, M., Tate, J. (eds.) Arithmetic and Geometry: papers dedicated to I.R. Shafarevich on the occasion of his sixtieth birthday, vol. 2. Boston Basel Stuttgart: Birkhaüser 1983

    Google Scholar 

  • [BR] Bao, D., Ratiu, T.: A candidate maximal torus in infinite dimensions. Contemp. Math., vol.132, pp. 117–124. Providence, RI: Am. Math. Soc. 1992, details to appear in another paper

    Google Scholar 

  • [Bi] Birkhoff, G.: Three observations on linear algebra. Rev. Univ. Nac. Tucumán, Ser. A5, 147–151 (1946) (we have only seen the Math. Reviews summary of this paper)

    Google Scholar 

  • [BBKR] Bloch, A.M., Brockett, R. W., Kodama, Y., Ratiu, T.: Spectral equations for the long wave limit of the Toda lattice equations. In: Proceedings of the CRM Workshop on Hamiltonian Systems, Transformation Groups and Spectral Transform Methods, pp. 97–402. Harnad, J., Marsden, J.E. (eds.), Publ. CRM, Montréal 1990

    Google Scholar 

  • [BBR] Bloch, A.M., Brockett, R. W., Ratiu, T.: A new formulation of the generalized Toda lattice equations and their fixed point analysis via the momentum map. Bull.23, 447–456 (1990)

    Google Scholar 

  • [Bo] Bogojavlenskiî, O.I.: Lax representations with spectral parameter for some dynamical systems. Izv. Akad. Nauk. SSSR52, 243–266 (1988)

    Google Scholar 

  • [BB] Brockett, R. W., Block, A.: Sorting with the dispersionless limit of the Toda lattice. In: Proceedings of the CRM Workshop on Hamiltonian Systems, Transformation Groups and Spectral Transform Methods, pp. 103–112, Harnad, J., Marsden, J.E. (eds.) Publ. CRM, Montréal 1990

    Google Scholar 

  • [Bro] Brockett, R. W.: Dynamical systems that sort lists, solve linear programming problems and diagonalize symmetric matrices. Proc. 1988 IEEE Conference on Decision and Control, 1988. Linear Algebra Appl.122–124, pp. 761–777 (1989)

    Google Scholar 

  • [Br] Brown, J.R.: Approximation theorems for Markov operators. Pac. J. Math.16, 13–23 (1966)

    Google Scholar 

  • [EM] Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math.92, 102–163 (1970)

    Google Scholar 

  • [Ha1] Halmos, P.: Approximation theorems for measure preserving transformations. Trans. Am. Math. Soc.55, 1–18 (1944)

    Google Scholar 

  • [Ha2] Halmos, P.: Measure Theory. Princeton, NJ: D. Van Nostrand 1950

    Google Scholar 

  • [HLP] Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge: Cambridge University Press 1934

    Google Scholar 

  • [H] Horn, A.: Doubly stochastic matrices and the diagonal of a rotation matrix. Am. J. Math.76 620–630 (1954)

    Google Scholar 

  • [K] Kostant, B.: On convexity, the Weyl group and the Iwasawa decomposition. Ann. Sci. Éc. Norm. Supér.6, 413–455 (1973)

    Google Scholar 

  • [KP] Kac, V.G., Peterson, D.H.: Unitary structure in representations of infinite-dimensional groups and a convexity theorem. Invent. Math.76, 1–14 (1984)

    Google Scholar 

  • [MO] Marshall, A. W., Olkin, I.: Inequalities: Theory of Majorization and its Applications. New York: Academic Press 1979

    Google Scholar 

  • [Mo] Moser, J.: Remark on the smooth approximation of volume-preserving homeomorphisms by symplectic diffeomorphisms. Zürich: Forschungsinstitut für Mathematik ETH (Preprint, October 1992)

    Google Scholar 

  • [Ro] Royden, H.: Real Analysis. New York: Macmillan 1963

    Google Scholar 

  • [R1] Ryff, J. V.: On the representation of doubly stochastic operators. Pac. J. Math.13, 1379–1386 (1963)

    Google Scholar 

  • [R2] Ryff, J. V.: Orbits ofL 1 functions under doubly stochastic transformations. Trans. Am. Math. Soc.117, 92–100 (1965)

    Google Scholar 

  • [R3] Ryff, J. V.: Extreme points of some convex subsets ofL 1(0, 1). Proc. Am. Math. Soc.18, 1026–1034 (1967)

    Google Scholar 

  • [S] Saks, S.: Theory of the Integral, 2nd ed. (Dover Publ.) New York: Dover 1964

    Google Scholar 

  • [Sa1] Savieliev, M.V.: Integro-differential nonlinear equations and continual Lie algebras. Commun. Math. Phys.121, 283–290 (1989)

    Google Scholar 

  • [Sa2] Saveliev, M. V.: On the integrability problem of the continuous long wave approximation of the Toda lattice. Lyon: Éc. Norm. Supé. Preprint (1992)

  • [SV] Saveliev, M. V., Vershik, A.M.: New examples of continuum graded Lie algebras. Phys. Lett.A143, 121–128 (1990)

    Google Scholar 

  • [Sch] Schur, I.: Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie. Sitzungsber. Berl. Math. Ges.22, 9–20 (1923)

    Google Scholar 

  • [T] Toda, M.: Theory of Nonlinear Lattices. Berlin Heidelberg New York: Springer 1981

    Google Scholar 

  • [VGG] Vershik, A.M., Gel'fand, I.M., Graev, M.I.: Representation of the group of diffeomorphisms. Usp. Mat. Nauk30 (no. 6), 1–50 (1975)

    Google Scholar 

  • [WE] Watson, D.S., Elsner, L.: On Rutishauser's approach to selfsimilar flows. SIAM J. Matrix. Anal. Appl.11, 301–311 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Takeshi Kotake on the occasion of his 60th birthday

Oblatum 25-XI-1992 & 17-III-1993

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloch, A.M., Flaschka, H. & Ratiu, T. A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus. Invent Math 113, 511–529 (1993). https://doi.org/10.1007/BF01244316

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01244316

Keywords

Navigation