Skip to main content
Log in

Metabolism of rubella virus-infected BHK21 cells Enhanced glycolysis and late cellular inhibition

  • Published:
Archiv für die gesamte Virusforschung Aims and scope Submit manuscript

Summary

When BHK21/13S cell monolayer cultures are infected with rubella virus at a high-exposure multiplicity (M = 10–20), the earliest detectable morphologic change, an increase in the refractility of the cells, develops within two days after infection and well after the virus has been released. No inhibition of cell replication occurs during the first 24 hours post-infection; a partial inhibition of cell division occurs thereafter and continues even after sub cultivation. This inhibition of cell division correlates with a decrease in DNA synthesis and an increased rate of aerobic glycolysis.

In stationary phase cultures, the first evidence of an increased aerobic glycolytic rate occurs between 24–36 hours post-infection and thus precedes the appearance of gross morphologic changes. By 24–32 hours after infection, the inhibition of RNA and protein synthesis is unquestionably evident, but the inhibition of DNA synthesis in infected cells is not evident until 33-4S hours post-infection. The declines in the rates of RNA and of protein synthesis parallel each other closely and appear to precede the inhibition of DNA synthesis by 12–24 hours. The acceleration of the glycolytic rate, on the other hand, precedes the inhibition of macromolecular synthesis and continues at a rate 4- to 6-fold greater than normal until the glucose in the medium has been exhausted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barker, S. B., andW. H. Summerson: J. biol. Chem.138, 535–554 (1941).

    Google Scholar 

  2. Becker, Y., N. Grossowicz, andH. Bernkopf: Proc. Soc. exp. Biol. (N. Y.)97, 77–82 (1958).

    Google Scholar 

  3. Becker, Y., N. Grossowicz, andH. Bernkopf: Proc. Soc. exp. Biol. (N. Y.)107, 603–606 (1961).

    Google Scholar 

  4. Boué, A., S. A. Plotkin, andJ. G. Boué: C. R. Acad. Sci. (Paris)259, 489–491 (1964).

    Google Scholar 

  5. Bray, G. A.: Ann. Biochem.1, 279–285 (1960).

    Google Scholar 

  6. Burton, K.: Biochem. J.62, 315–323 (1956).

    PubMed  Google Scholar 

  7. Dchang-Lia, G., S. M. Rapoport, andE. Edlinger: Acta biol. med. germ.7, 392–401 (1961).

    PubMed  Google Scholar 

  8. Fisher, T. N., andH. S. Ginsberg: Proc. Soc. exp. Biol. (N. Y.)95, 47–51 (1957).

    Google Scholar 

  9. Green, M., G. Henle, andF. Bernhardt: Virology5, 206–219 (1958).

    PubMed  Google Scholar 

  10. Hall, T. C., andE. C. Cocking: Biochem. J.96, 626–633 (1965).

    PubMed  Google Scholar 

  11. Hayflick, L.: Exp. Cell Ees.37, 614–636 (1965).

    Google Scholar 

  12. Kondo, A.: Virology27, 199–204 (1965).

    PubMed  Google Scholar 

  13. Korbecki, M.: Bull. Acad. pol. Sci.14, 85–87 (1966).

    Google Scholar 

  14. Levy, H. B., andS. Baron: J. infect. Dis.100, 109–118 (1957).

    PubMed  Google Scholar 

  15. Lowry, O. H., N. J. Rosebrough, A. L. Farr, andR. J. Randall: J. biol. Chem.193, 265–275 (1951).

    PubMed  Google Scholar 

  16. Luthardt, Th., andD. Wilkin: Z. Naturforsch.19b, 899–905 (1964).

    Google Scholar 

  17. Maassab, H. F., andK. W. Cochran: Proc. Soc. exp. Biol. (N. Y.)117, 410–413 (1964).

    Google Scholar 

  18. Maes, R., A. Vaheri, D. Sedwick, andS. Plotkin: Nature (Lond.)210, 384–386 (1966).

    Google Scholar 

  19. Norrby, E., P. Magnusson, B. Friding, andS. Gard: Arch. ges. Virusforsch.13, 421–424 (1963).

    PubMed  Google Scholar 

  20. Parkman, P. D., E. L. Buescher, andM. S. Artenstein: Proc. Soc. exp. Biol. (N. Y.)111, 225–230 (1962).

    Google Scholar 

  21. Plotkin, S. A., A. Boué, andJ. G. Boué: Amer. J. Epidem.81, 71–85 (1965).

    Google Scholar 

  22. Schmidt, G., andS. J. Thannhauser: J. biol. Chem.161, 83–89 (1945).

    Google Scholar 

  23. Vaheri, A., D. Sedwick, S. A. Plotkin, andR. Maes: Virology27, 239–241 (1965).

    PubMed  Google Scholar 

  24. Wecker, E.: Z. Naturforsch.14 b, 370–378 (1959).

    Google Scholar 

  25. Weller, T. H., andF. A. Neva: Proc. Soc. exp. Biol. (N. Y.)111, 215–225 (1962).

    Google Scholar 

  26. Zemla, J.: Acta virol.6, 436–446 (1962).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaheri, A., Cristofalo, V.J. Metabolism of rubella virus-infected BHK21 cells Enhanced glycolysis and late cellular inhibition. Archiv f Virusforschung 21, 425–436 (1967). https://doi.org/10.1007/BF01241741

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01241741

Keywords

Navigation