Skip to main content
Log in

Perturbation of embedded eigenvalues in the generalizedN-body problem

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We discuss the perturbation of continuum eigenvalues without analyticity assumptions. Among our results, we show that generally a small perturbation removes these eigenvalues in accordance with Fermi's Golden Rule. Thus, generically (in a Baire category sense), the Schrödinger operator has no embedded non-threshold eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Lectures on exponential decay of solutions of second-order elliptic equations. Princeton, NJ: Princeton University Press 1982

    Google Scholar 

  2. Aizenman, M., Simon, B.: Brownian motion and Harnack's inequality for Schrödinger operators, Commun. Pure Appl. Math.35, 209–273 (1982)

    Google Scholar 

  3. Froese, R., Herbst, I.: A new proof of the Mourre estimate. Duke Math. J.49, 1075–1085 (1982)

    Google Scholar 

  4. ——: Exponential bounds and absence of positive eigenvalues forN-body Schrödinger operators. Commun. Math. Phys.87, 429–447 (1982)

    Google Scholar 

  5. ——: Exponential lower bounds to solutions of the Schrödinger equation: Lower bounds for the spherical average. Commun. Math. Phys.92, 71–80 (1983)

    Google Scholar 

  6. Froese, R., Herbst, I., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T.:L 2-exponential lower bounds for solutions to the Schrödinger equation. Commun. Math. Phys.87, 265–286 (1982)

    Google Scholar 

  7. Georgescu, V.: On the unique continuation property for Schrödinger hamiltonians. Helvetica Physica Acta,52, 655–670 (1979)

    Google Scholar 

  8. Howland, J. S.: Perturbation of embedded eigenvalues. Bull. A.M.S.78, 280–283 (1972)

    Google Scholar 

  9. ——: Puiseux series for resonances at an embedded eigenvalue. Pac. J. Math.55, 157–176 (1974)

    Google Scholar 

  10. Jerison, D., Kenig, C., with an appendix by Stein, E.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math.121, 463–494 (1985)

    Google Scholar 

  11. Jensen, A., Kitada, H.: Fundamental solutions and eigenfunction expansions for Schrödinger operators II, Eigenfunction expansions. Math. Z.199, 1–13 (1988)

    Google Scholar 

  12. Kato, T.: Perturbation theory for linear operators Berlin, Heidelberg, New York: Springer 1966

    Google Scholar 

  13. ——: Wave operators and similarity for some non-selfadjoint operators. Math. Ann.162, 258–279 (1966)

    Google Scholar 

  14. Kitada, H.: Fundamental solutions and eigenfunction expansions for Schrödinger operators I, Fundamental solutions. Math. Z.198, 181–190 (1988)

    Google Scholar 

  15. Mourre, E.: Absence of singular continuous spectrum for certain self-adjoint operators. Commun. Math. Phys.78, 391–408 (1981)

    Google Scholar 

  16. ——: Operateurs conjugues et proprietes de propagations. Commun. Math. Phys.91, 279 (1983)

    Google Scholar 

  17. Perry, P., Sigal, I., Simon, B.: Spectral analysis ofN-body Schrödinger operators. Ann. Math.114, 519–567 (1981)

    Google Scholar 

  18. Phillips, R., Sarnak, P.: On cusp forms for co-finite subgroups of PSL (2, ℝ). Invent. Math.80, 339–364 (1985)

    Google Scholar 

  19. Reed, M., Simon, B.: Methods of modern mathematical physics, vol. IV. Analysis of operators. New York: Academic Press 1978

    Google Scholar 

  20. Sawyer, E.: Unique continuation of Schrödinger operators in dimension three or less. Ann. Inst. Fourier33, 189–200 (1984)

    Google Scholar 

  21. Simon, B.: Resonances inn-body quantum systems with dilation analytic potentials and the foundations of time-dependent perturbation theory. Ann. Math.97, 247–274 (1973)

    Google Scholar 

  22. ——: Schrödinger semigroups. Bull. A.M.S.7, 447–526 (1982)

    Google Scholar 

  23. Uhlenbeck, K.: Generic properties of eigenfunctions. Am. J. Math.98, 1059–1078 (1976)

    Google Scholar 

  24. Colin de Verdiere, Y.: Pseudo-Laplacians II. Ann. Inst. Fourier33, 87–113 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Supported in part by NSF Grant DMS 8602826

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agmon, S., Herbst, I. & Skibsted, E. Perturbation of embedded eigenvalues in the generalizedN-body problem. Commun.Math. Phys. 122, 411–438 (1989). https://doi.org/10.1007/BF01238435

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01238435

Keywords

Navigation