Skip to main content
Log in

Combinatorial relaxation algorithm for the maximum degree of subdeterminants: Computing Smith-Mcmillan form at infinity and structural indices in Kronecker form

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

LetA(x)=(A ij (x)) be a matrix withA ij (x) being a polynomial or rational function inx. This paper proposes a “combinatorial relaxation” type algorithm for computing the highest degreeδ k (A) of a minor ofA(x) of a specified orderk. Such an algorithm can be used to compute the Smith-McMillan form of a rational function matrix at infinity, as well as the structure of the Kronecker form of a matrix pencil. The algorithm is based on a combinatorial upper bound\(\hat \delta _k (A)\) onδ k (A), which is defined as the maximum weight of a matching of sizek in a bipartite graph associated withA. The algorithm is efficient, making full use of the fast algorithms for weighted matchings. It is combinatorial in almost all cases (or generically) and invokes algebraic elimination routines only when accidental numerical cancellations occur. The validity relies on the integrality of bipartite matching polytopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenan, K. E., Campbell, S. L., Petzold, L. R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations: New York: North-Holland 1989

    Google Scholar 

  2. Brualdi, R. A., Ryser, H. J.: Combinatorial Matrix Theory. London: Combridge University Press 1991

    Google Scholar 

  3. Buchberger, B., Collins, G. E., Loos, R.: Computer Algebra — Symbolic and Algebraic Computation. Computing [Suppl 4], Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  4. Chvátal, V.: Linear Programming. W. H. Freeman and Company 1983

  5. Commault, C., Dion, J.-M.: Structure at infinity of linear multivariable systems: a geometric approach. IEEE Trans. Automatic ControlAC-27, 693–696 (1982)

    Google Scholar 

  6. Commault, C., Dion, J.-M.: Perez, A.: Disturbance rejection for structured systems. IEEE Trans. Automatic ControlAC-36, 884–887 (1991)

    Google Scholar 

  7. Davenport, J., Siret, Y., Tournier, E.: Computer Algebra — Systems and Algorithms for Algebraic Manipulation. Academic Press: New York 1988

    Google Scholar 

  8. Duff, I., Gear, C. W.: Computing the structural index. SIAM J Algebraic Discrete Meth7, 594–603 (1986)

    Google Scholar 

  9. Edmonds, J., Johnson, E. L.: Matching: a well-solved class of integer programs. In: R. Guy, H. Hanai, N. Sauer, J. Schönsheim (eds.), Combinatorial Structures and Their Applications pp. 89–92. New York: Gordon and Breach 1970

    Google Scholar 

  10. Fujishige, S.: Submodular Functions and Optimization. Ann Discrete Math47. Amsterdam: North-Holland 1991

    Google Scholar 

  11. Gantmacher, F. R.: The Theory of Matrices. New York: Chelsea 1959

    Google Scholar 

  12. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Berlin, Heidelberg New York: Springer 1991

    Google Scholar 

  13. Hautus, M. L. J.: The formal Laplace transform for smooth linear systems. In: Marchesini, G., Mitter, S. K. (eds.), Mathematical Systems Theory, Lecture Notes in Economics and Mathematical Systems vol131, pp. 29–47. Berlin, Heidelberg New York: Springer 1976

    Google Scholar 

  14. Kung, J. P. S.: Bimatroids and invariants. Adv Math30, 238–249 (1978)

    Google Scholar 

  15. Lawler, E. L.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston 1976

  16. Lovásaz, L., Plummer, M.: Matching Theory. Amsterdam: North-Holland 1986

    Google Scholar 

  17. Murota, K.: Computing Puiseux-series solutions to determinantal equations via combinatorial relaxation. SIAM J Comput19, 1132–1161 (1990)

    Google Scholar 

  18. Murota, K.: Computing the degree of determinants via combinatorial relaxation. SIAM J Comput24, No. 4 (1995)

    Google Scholar 

  19. Murota, K.: An identity for matching and skew-symmetric determinant. Linear Algebra Its Appl (to appear)

  20. Murota, K.: An identity for bipartite matching and symmetric determinant. Linear Algebra and Its Appl (to appear)

  21. Murota, K., van der Woude, J. W.: Structure at infinity of structured descriptor systems and its applications. SIAM J Control Optimization29, 878–894 (1991)

    Google Scholar 

  22. Newman, M.: Integral Matrices. London: Academic Press 1972

    Google Scholar 

  23. Recski, A.: Matroid Theory and Its Applications in Electric Network Theory and in Statics. Algorithms and Combinatorics vol.6, Berlin, Heidelberg, New York: Springer 1989

    Google Scholar 

  24. Sasaki, T.: Symbolic and Algebraic Manipulation. Information Processing Society of Japan 1981 (in Japanese)

  25. Schrijver, A.: Matroids and Linking Systems. Mathematics Centre Tracts vol.88, 1978

  26. Schrijver, A.: Theory of Linear and Integer Programming. New York: John Wiley 1986

    Google Scholar 

  27. Suda, N., Wan, B., Ueno, I.: The orders of infinite zeros of structured systems. Trans Soc Instrument Control Eng Jpn,25, 1062–1068 (1989) (in Japanese)

    Google Scholar 

  28. Tarjan, R. E.: Data Structures and Network Algorithms. SIAM Regional Conference Series in Applied Mathematics vol.44, 1983

  29. Verghese, G. C., Kailath, T.: Rational matrix structure. IEEE Trans Automatic ControlAC-26, 434–439 (1981)

    Google Scholar 

  30. van der Woude, J. W.: On the structure at infinity of a structured system. Linear Algebra Its Applications148, 145–169 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is supported in part by the Sumitomo Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murota, K. Combinatorial relaxation algorithm for the maximum degree of subdeterminants: Computing Smith-Mcmillan form at infinity and structural indices in Kronecker form. AAECC 6, 251–273 (1995). https://doi.org/10.1007/BF01235719

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01235719

Keywords

AMS (MOS) classification

Navigation