Skip to main content
Log in

Orbit counting for some discrete groups acting on simply connected manifolds with negative curvature

  • Published:
Inventiones mathematicae Aims and scope

Summary

In this article we develop a method of deriving asymptotic formulae for the orbital counting function for the action of certain discrete groups of isometries of simply connected negatively curved manifolds. We consider the particular case of normal subgroupsΓΓ 0 of a co-compact groupΓ 0 for which the quotientΓ 0/Γ ≌ ℤk. Even in the special case of manifolds ofconstant negative curvature, this leads to new results. In particular, we have asymptotic estimates for some groups which arenot geometrically finite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anosov, D.V. Geodesic Flows on Closed Riemann Manifolds with Negative Curvature. (Translation of Proc. Steklov Inst. Math. vol. 90) Providence: Am. Math. Soc. 1969

    Google Scholar 

  2. Ballman, W., Gromov, M., Schroeder, R.: Manifolds with non-positive curvature. Boston Basel Stuttgart: Birkhäuser 1985

    Google Scholar 

  3. Bowen, R.: Symbolic dynamics for hyperbolic flows. Am. J. Math.95, 429–460 (1973)

    Google Scholar 

  4. Bowen R., Marcus B.: Unique ergodicity for horocycle foliations. Isr J. Math.26, 43–67 (1977)

    Google Scholar 

  5. Bowen R., Ruelle, D.: The ergodic theory of Axiom A flows. Invent. Math.29, 181–201 (1975)

    Google Scholar 

  6. Eberlein, P.: When is a geodesic flow of Anosov type?. I. J. Dif. Geom.8, 437–463 (1972)

    Google Scholar 

  7. Epstein, C.: The spectral theory of geometrically periodic hyperbolic 3-manifolds. Mem. Am. Math. Soc.58 (335) 1–161 (1985)

    Google Scholar 

  8. Fried, D.: Lefschetz formulas for flows. (Contemp. Math., vol. 53) Providence: Am. Math. Soc. 1987

    Google Scholar 

  9. Ghys, E., de la Harpe, P.: Sur les groupes hyperboliques d'après Mikhael Gromov. Boston Basel Stuttgart Birkhäuser 1990

    Google Scholar 

  10. Guillopé L.: Entropies et spectres. Preprint no. 218 Institut Fourier (1992)

  11. Hirsch, M., Pugh, C., Shub, M.: Invariant manifolds. (Lect. Notes 583) Berlin: Springer 1977

    Google Scholar 

  12. Huber, H.: Über eine neue Klasse automorpher Funktionen und ein Gitterpunktproblem in der hyperbolischen Ebene. Comment. Math. Helv.30, 20–62 (1956)

    Google Scholar 

  13. Huber, H.: Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II. Math. Ann.142, 385–398 (1961)

    Google Scholar 

  14. Kato, T.: Perturbation theory for linear operators. Berlin Heidelberg New York: Springer 1966

    Google Scholar 

  15. Katsuda, A.: Density theorems for closed orbits. Proceedings of the Taniguchi conference. In: Sunada, T. (ed.) (Lect. Notes Math. vol. 1339, pp. 182–202) Berlin Heidelberg New York Springer 1987

    Google Scholar 

  16. Katsuda A., Sunada, T.: Homology and closed geodesics in a compact Riemann surface. Am. J. Math.110, 145–156 (1988)

    Google Scholar 

  17. Katsuda A., Sunada, T.: Closed orbits in homology classes. Publ. Math. Inst. Hautes Étud. Sci.71, 5–32 (1990)

    Google Scholar 

  18. Lalley, S.: Renewal theorems in symbolic dynamics, with applications to geodesic flows, noneuclidean tessellations and their fractal limits. Acta Math.163, 1–55 (1989)

    Google Scholar 

  19. Lang, S.: Algebraic Number Theory. New York: Addison-Wesley 1970

    Google Scholar 

  20. Lax, P., Phillips, R.: The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces. J. Funct. Anal.46, 280–350 (1982)

    Google Scholar 

  21. Livsic, A.: Cohomology properties of dynamical systems. Math. USSR, Izv.6, 1278–1301 (1972)

    Google Scholar 

  22. Manning, A.: Topological entropy for geodesic flows. Ann. Math.110, 567–573 (1979)

    Google Scholar 

  23. Margulis, G.: On some applications of ergodic theory to the study of manifolds of negative curvature. Funct. Anal. Appl.3, 89–90 (1969)

    Google Scholar 

  24. Margulis, G.: Certain measures associated with U-flows on compact manifolds. Funct. Anal. Appl.4, 55–67 (1970)

    Google Scholar 

  25. Nicholls, P.: The ergodic theory of discrete groups. (Lond. Math. Soc. Lect. Note Ser., 143) Cambridge: Cambridge University Press 1989

    Google Scholar 

  26. Parry, W., Topics in ergodic theory. Cambridge: Cambridge University Press 1986

    Google Scholar 

  27. Parry, W., Pollicott. M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque187–188, 1–268 (1990)

    Google Scholar 

  28. Patterson, S.: Spectral theory and Fuchsian groups. Math. Proc. Camb. Philos. Soc.81, 59–71 (1977)

    Google Scholar 

  29. Patterson, S.: Measures on limit sets of Kleinian groups. In: Epstein D.B.A. (ed.) Analytical and Geometric Aspects of Hyperbolic Space, Lect Note Ser. 111) Cambridge: Cambridge University Press 1987

    Google Scholar 

  30. Pollicott, M.: Homology and closed geodesics for negatively curved surfaces. Am. J. Math 113 379–385 (1991)

    Google Scholar 

  31. Pollicott, M.: A new proof of a theorem of Margulis on geodesic arcs on a negatively curved manifold. Am. J. Math. (to appear)

  32. Ratner, M.: Markov partitions for Anosov flows on n-dimensional manifolds. Isr. J. Math.15, 92–114 (1973)

    Google Scholar 

  33. Rees, M.: Checking ergodicity of some geodesic flows with infinite Gibbs measure. Ergodic Theory Dyn. Syst.1, 107–133 (1981)

    Google Scholar 

  34. Ruelle, D.: Thermodynamic Formalism. New York: Addison Wesley 1978

    Google Scholar 

  35. Sharp, R.: Prime orbit theorems with multi-dimensional constraints for Axiom A flows. Monatsh. Math.114, 261–304 (1992)

    Google Scholar 

  36. Sinai, Y.: The asymptotic behaviour of the number of closed geodesics on a compact manifold of negative curvature. Transl. Am. Math. Soc.73, 227–250 (1976)

    Google Scholar 

  37. Sullivan D.: The density at infinity of a discrete group of hyperbolic motions. Publ. Math. Inst. Hautes Étud. Sci.50, 171–202 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Oblatum III-1993 & 18-VIII-1993

The first author was supported by The Royal Society through a University Research Fellowship. The second author was supported by the UK SERC under grant number GR/G51930

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollicott, M., Sharp, R. Orbit counting for some discrete groups acting on simply connected manifolds with negative curvature. Invent Math 117, 275–302 (1994). https://doi.org/10.1007/BF01232242

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01232242

Keywords

Navigation