Skip to main content
Log in

Distribution of points for convergent interpolatory integration rules on (−∞, ∞)

  • Published:
Constructive Approximation Aims and scope

Abstract

Letw be a “nice” positive weight function on (−∞, ∞), such asw(x)=exp(−⋎xα) α>1. Suppose that, forn≥1,

$$I_n [f]: = \sum\limits_{j = 1}^n {w_{jn} } f(x_{jn} )$$

is aninterpolatory integration rule for the weightw: that is for polynomialsP of degree ≤n-1,

$$I_n [P]: = \int\limits_{ - \infty }^\infty {P(x)w(x)dx.} $$

Moreover, suppose that the sequence of rules {I n} t8 n=1 isconvergent:

$$\mathop {\lim }\limits_{n \to \infty } I_n [f] = \int\limits_{ - \infty }^\infty {f(x)w(x)dx} $$

for all continuousf:RR satisfying suitable integrability conditions.

What then can we say about thedistribution of the points {x jn} n j=1 ,n≥1? Roughly speaking, the conclusion of this paper is thathalf the points are distributed like zeros of orthogonal polynomials forw, and half may bearbitrarily distributed. Thus half the points haveNevai-Ullmann distribution of order α, and the rest are arbitrarily distributed. We also describe the possible distributions of the integration points, when the ruleI n has precision other thann-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Baker, Jr. (1975): Essentials of Padé Approximants. New York: Academic Press.

    Google Scholar 

  2. T. Bloom, D. S. Lubinsky, H. Stahl (1993):What distributions of points are possible for convergent sequences of interpolatory integration rules? Constr. Approx, this issue, pp. 41–58.

  3. P. J. Davis, P. Rabinowitz (1984): Methods of Numerical Integration, 2nd Edn. San Diego, CA: Academic Press.

    Google Scholar 

  4. Z. Ditzian, V. Totik (1987): Moduli of Smoothness Springer Series in Computational Mathematics, vol. 9. Berlin: Springer-Verlag.

    Google Scholar 

  5. P. Erdös, P. Turan (1938):On interpolation II. Ann. of Math.,39:703–724.

    Google Scholar 

  6. M. Fekete (1923):Uber die Verteilung, der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z.,17:228–249.

    Google Scholar 

  7. M. Fekete, J. L. Walsh (1954/55):On the asymptotic behavior of polynomials with extremal properties and of their zeros. J. Analyse Math.,4:49–87.

    Google Scholar 

  8. G. Freud (1971): Orthogonal Polynomials. Budapest: Akademiai Kiado/Pergamon Press.

    Google Scholar 

  9. E. Hille (1962): Analytic Function Theory II. Waltham, MA: Ginn and Blaisdell.

    Google Scholar 

  10. N. S. Landkof (1972): Foundations of Modern Potential Theory. Berlin: Springer-Verlag.

    Google Scholar 

  11. A. L. Levin, D. S. Lubinsky, (1992):Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud, weights. Constr. Approx.,8:461–533.

    Google Scholar 

  12. D. S. Lubinsky (1986):Gaussian quadrature, weights on the whole real line, and even entire functions with non-negative even order derivatives. J. Approx. Theory,46:297–313.

    Google Scholar 

  13. H. N. Mhaskar, E. B. Saff (1984):Extremal problems for polynomials with exponential weights. Trans. Amer. Math. Soc.,285:203–234.

    Google Scholar 

  14. H. N. Mhaskar, E. B. Saff. (1987):Where does the L p-norm of a weighted polynomial live? Trans. Amer. Math. Soc.,303:109–124 (Errata)308:431.

    Google Scholar 

  15. H. N. Mhaskar, E. B. Saff (1992):Weighted analogues of capacity, transfinite diameter and Chebyshev constant. Constr. Approx.8:105–124.

    Google Scholar 

  16. P. Nevai (1974): Orthogonal Polynomials. Memoirs of the American Mathematical Society, no. 213. Providence, RI: American Mathematical Society.

    Google Scholar 

  17. P. Nevai (1986):Geza Freud, Orthogonal polynomials and Christoffel functions, a case study. J. Approx. Theory,48:3–167.

    Google Scholar 

  18. P. Nevai, V. Totik (1982):Weighted, polynomial inequalities. Constr. Approx.,2:113–127.

    Google Scholar 

  19. P. Nevai, V. Totik (1987):Sharp Nikolskii inequalities with exponential weights. Anal. Math.,13:261–267.

    Google Scholar 

  20. E. A. Rahmanov (1984):On asymptotic properties of polynomials orthogonal on the real axis. Math. USSR-Sb.,47:155–193.

    Google Scholar 

  21. E. B. Saff, V. Totik (to appear):Weighted polynomials and potentials in the complex plane. Manuscript.

  22. H. Stahl, V. Totik (1992): General Orthogonal Polynomials. Encyclopeadia of Mathematics and its Applications, vol. 43. Cambridge: Cambridge University Press.

    Google Scholar 

  23. J. Szabados, P. Vertesi (1989): Interpolation of Functions. Singapore: World Scientific.

    Google Scholar 

  24. G. Szegö, (1975): Orthogonal Polynomials. American Mathematical Society Colloquium Publications, vol. 23. Providence, RI: American Mathematical Society.

    Google Scholar 

  25. M. Tsuji (1975): Potential Theory, 2nd edn. New York: Chelsea.

    Google Scholar 

  26. J. L. Walsh (1969): Interpolation and Approximation by Rational Functions in the Complex Domain, 3rd edn. American Mathematical Society Colloquium Publications, vol. 20. Providence, RI: American Mathematical Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Edward B. Saff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloom, T., Lubinsky, D.S. & Stahl, H. Distribution of points for convergent interpolatory integration rules on (−∞, ∞). Constr. Approx 9, 59–82 (1993). https://doi.org/10.1007/BF01229336

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01229336

AMS classification

Key words and phrases

Navigation