Skip to main content
Log in

Platinum-, palladium- and gold-rich arsenide ores from the Kylmäkoski Ni-Cu deposit

Pt- Pd- und Au-reiche Arseniderze von der Ni-Cu Lagerstätte Kilmäkoski (Vammala Nickel-Gürtel, SW Finnland)

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The Kylmäkoski deposit consists of a disseminated primary Ni-Cu mineralization hosted by a differentiated ultramafic body. It also shows sulfide veins (tens of meters long and up to 20 cm thick) that evolve laterally to massive Ni-arsenide ores. In these sulfide/arsenide veins, three different ore assemblages can be distinguished: 1) sulfide ores (S ores) composed of pyrrhotite, pentlandite and chalcopyrite with minor amounts of cubanite, sphalerite and argentopentlandite which locally occurs intergrown with Ag-free pentlandite; 2) sulfide/arsenide ores (S/As ores) made up of the former S ores corroded and replaced by nickeline (locally with graphite), with gersdorffite filling discordant veins, abundant minute grains of sudburyite and accessory molybdenite, ullmanite, stibnite, galena and breithauptite; 3) arsenide ores (As ores) composed of nickeline, maucherite and disseminated, zoned cobaltite, with minor chalcopyrite, cubanite, sperrylite, sudburyite, electrum, galena, altaite and pilsenite. These veined ore assemblages were generated by the remobilization of primary, late magmatic arsenide-rich ores (well represented in the Vammala mine) by the intrusion of pegmatitic fluids derived from the partial melting of the metasedimentary country rocks.

The early fractional crystallization of the monosulfide solid solution produced a residual As-rich melt that collected most noble metals (specially Pt, Pd and Au) leaving the primary Ni-Cu sulfide ores impoverished in these elements. In fact, late magmatic arsenide ores from Vammala contain up to 42.5 ppm Pd (in the form of extremely fine inclusions of sudburyite in nickeline and maucherite, and dissolved in trace amounts in the lattice of the latter Ni arsenides) and 9.6 ppm Au (concentrated in abundant minute inclusions of electrum in Ni arsenides). Later, during the remobilization of the primary arsenide ores of Kylmäkoski, Pd concentrated both in S/As and As ores in the form of sudburyite and in a rare PdBi compound. It also occurs in trace amounts in nickeline from S/As ores and in maucherite from As ores. Pt mainly concentrated in As ores as sperrylite and, in minor amounts in pilsenite and in cobaltite coronas around sperrylite. It occurs in trace amounts in the cores of zoned cobaltite. Gold is always present in the form of irregular grains of electrum in As ores.

Zusammenfassung

Die Lagerstätte Kilmäkoski ist eine disseminierte primäre Ni-Cu-Vererzung, die in einem differenzierten ultramafischen Körper aufsitzt. Hier treten auch Sulfid-Gänge, die bis zu Zehnern von Metern lang und bis zu 20 cm mächtig sein können, auf; aus diesen entwickeln sich lateral massive Nickel-Arsenid Erze. Drei Erzparagenesen können in diesen Sulfid-Arsenid-Gängen unterschieden werden: 1. Sulfidische Erze mit Pyrrhotin, Pentlandit, Kupferkies und geringen Mengen von Cubanit, Zinkblende und Argentopentlandit der örtlich mit Ag-freiem Pentlandit verwachsen ist 2. Sulfid-Arsenid Erze, die aus korrodierten und durch Rotnickelkies verdrängten Sulfid-Erzen bestehen. Diese führen örtlich Graphit, Gersdorffit kommt als Füllung diskordanter Gänge vor. Außerdem gibt es verbreitet kleine Körner von Sudburyit und akzessorischem Molybdänit, Ullmanit, Antimonglanz, Bleiglanz und Breithaup tit. 3. Arsenid-Erze, die aus Rotnickelkies, Maucherit und disseminiertem, zonarem Kobaltit, mit Kupferkies, Cubanit, Sperrylit, Sudburyit, Elektrum, Bleiglanz, Altait und Pilsenit als Nebengemengteile bestehen. Diese gangförmigen Erzparagenesen entstanden durch die Remobilisation von primären, spätmagmatischen Arsenidreichen Erzen, die in der Vammala-Mine sehr gut aufgeschlossen sind, und auf die Intrusion pegmatitischer Fluide zurückgehen, die durch teilweises Aufschmelzen der metasedimentären Nebengesteine entstanden sind.

Die frühe fraktionierte Kristallisation der Monosulfid Solid Solution führte zu einer residualen As-reichen Schmelze, die den Großteil der Edelmetalle (besonders Pt, Pd und Au) aufgenommen und die primären Ni-Cu Sulfiderze an diesen Elementen verarmt zurückgelassen hat. Spätmagmatische Arseniderze aus Vammala enthalten bis zu 42,5 ppm Pd (in Form von extrem feinkörnigen Einschlüssen von Sudburyit in Rotnickelkies und Maucherit, und als Spurengehalte im Gitter der späten Nickel-Arsenide), sowie 9,6 ppm Au, das hauptsächlich in den verbreiteten winzigen Einschlüssen von Electrum in Nickelarseniden vorkommt. Während der späteren Remobilisierung der primären Arseniderze von Kylmäkoski wurde Pd sowohl in S/As und As-Erzen in der Form von Sudburyit und in einer seltenen Pd-Bi Verbindung konzentriert. Es kommt auch als Spurenelement im Rotnickelkies aus S/As-Erzen und im Maucherit aus As-Erzen vor. Pt is vorwiegend in As-Erzen konzentriert, und zwar als Sperrylit, sowie in geringen Mengen in Pilsenit und in Colbaltit-Rändern um Sperrylit. Es kommt in Spurenelementen in den Kernen von zonaren Kobaltiten vor. Gold liegt stets in Form unregelmäßiger Elektrum-Körner in As-Erzen vor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cabri LJ (1992) The distribution of trace precious metals in minerals and mineral products. Mineral Mag 56: 289–308

    Google Scholar 

  • Cabri LJ, Laflamme JHG (1974) Sudburyite, a new palladium-antimony mineral from Sudbury, Ontario. Can Mineral 12: 275–279

    Google Scholar 

  • Chen Y, Fleet ME, Pan Y (1993) Platinum-group minerals and gold in arsenic-rich ore at the Thompson mine, Thompson Nickel Belt, Manitoba, Canada. Mineral Petrol 49: 127–146

    Google Scholar 

  • Fleet ME, Chryssoulis SL, Stone WE, Weisener CG (1993) Partitioning of Platinum-group elements and Au in the Fe-Ni-Cu-S system: experiments on the fractional crystallization of sulfide melt. Contrib Mineral Petrol 115: 36–44

    Google Scholar 

  • Gervilla F, Makovicky E, Makovicky M, Rose-Hansen J (1994) The system Pd-Ni-As at 790° and 4501C. Econ Geol 89: 1630–1639

    Google Scholar 

  • Gervilla F, Leblanc M, Torres-Ruiz J, Fenoll Hach-Alí P (1996) Immiscibility between arsenide and sulfide melts: a mechanism for the concentration of noble metals. Can Mineral 34: 485–502

    Google Scholar 

  • Gervilla F Papunen H, Kojonen K (1997a) Mineralogy of Pt-, Pd- and Au- bearing arsenide ores of the Kylmäkoski Ni-Cu deposit, Vammala nickel belt, SW Finland. In:Papunen H (ed) Mineral deposits: research and exploration. Where do they meet? Balkema, Rotterdam, pp 419–422

    Google Scholar 

  • Gervilla F, Papunen H, Kojonen K, Johanson B (1997b) Results of trace platinum group element analyses of arsenides and sulfarsenides from some Finnish PGE-bearing maficultramafic intrusions. In:Papunen H (ed) Mineral deposits: research and exploration. Where do they meet? Balkema, Rotterdam, pp 423–426

    Google Scholar 

  • Gervilla F, Sáinchez-Anguita A, Acevedo RD, Fenoll Hach-All P, Paniagua A (1997c) Platinum-group element sulpharsenides and Pd bismuthotellurides in the metamorphosed Ni-Cu deposit at Las Aguilas (Province of San Luis, Argentina). Mineral Mag 61:861–877

    Google Scholar 

  • Hdkli TA, Vormisto K, Hänninen E (1979) Vammala, a nickel deposit in layered ultramafite, southwest Finland. Econ Geol 74: 1166–1182

    Google Scholar 

  • Kilpeldinen T, Rastas J (1992) Vammalan Stormin Nimalmin ympäristön metamorfisista ja rakennegeologista tutkimuksista. Inst Geol Mineral, Univ Turku, Turku, Publ No 30, pp 1–18

    Google Scholar 

  • Kim WS, Chao GY (1991) Phase relations in the system Pd-Sb-Te. Can Mineral 29: 401–409

    Google Scholar 

  • Kim WS, Chao GY (1996) Phase relations in the system Pd-Pt-Sb. N Jb Mineral Mh: 351–364

  • Klemm DD (1965) Synthesen and Analysen in den Dreieckdiagrammen FeAsS-CoAsSNiAsS and FeS2-CoS2-NiS2. N Jb Mineral Abh 103: 205–255

    Google Scholar 

  • Koljonen T (ed) (1992) Geochemical atlas of Finland, part 2. Till. Geological Survey of Finland, 218 pp

  • Krstic S, Tarkian M (1997) Platinum-group minerals in gold-bearing placers associated with the Veluce ophiolite complex, Yugoslavia. Can Mineral 35: 1–21

    Google Scholar 

  • Lahtinen R, Lestinen P (1996) Background variations of ore-related elements and regional scale mineralization indications in Paleoproterozoic bedrock in the TampereHämmenlinna area, southern Finland. Geol Surv Finland Bull 390: 1–34

    Google Scholar 

  • Li C, Barnes S-J, Makovicky E, Rose-Hansen J, Makovicky M (1996) Partitioning of nickel, copper; iridium, rhenium, platinum and palladium between monosulfide solid solution and sulfide liquid: effects of composition and temperature. Geochim Cosmochim Acta 60: 1231–1238

    Google Scholar 

  • Makovicky E, Karup-Møller S, Makovicky M, Rose-Hansen J (1990) Experimental studies on the phase systems Fe-Ni-Pd-S and Fe-Pt-Pd-As-S applied to PGE deposits. Mineral Petrol 42: 307–319

    Google Scholar 

  • Makovicky R, Rose-Hansen J, Karup-Møller S, Makovicky M (1991) Factors governing concentration of platinum-group elements in layered complexes. Final Rep, European Economic Communities Contract MAIM-0006-DK (unpubl)Makovicky E, Makovicky M, Rose-Hansen J (1992) The phase system Pt-Fe-As-S at 850 °C and 470'C. N Jb Mineral Mh: 441-453

  • Mandziuk ZL, Scott SD (1977) Synthesis, stability, and phase relations of argentian pentlandite in the system Ag-Fe-Ni-S. Can Mineral 15: 349–364

    Google Scholar 

  • Merkle RK (1992) Platinum-group minerals in the middle group of chromitite layers at Marikana, western Bushveld Complex: indications for collection mechanisms and postmagmatic modification. Can J Earth Sci 29: 209–221

    Google Scholar 

  • Marshall B, Mancini F (1994) Major- and minor-element mobilization, with implications for Ni-Cu-Fe-sulfide remobilization, during retrograde metasomatism at the Vammala Mine, southwest Finland. Chem Geol 116: 203–227

    Google Scholar 

  • Morales-Ruano S, Fenoll Hach-Ali P (1996) Hydrothermal argentopentlandite at et Charcón, southeastern Spain: mineral chemistry and conditions of formation. Can Mineral 34: 939–947

    Google Scholar 

  • Papunen H (1980) The Kylmaköski nickel-copper deposit in southwestern Finland. Geol Soc Finland Bull 52: 129–145

    Google Scholar 

  • Papunen H (1986) Platinum-group elements in Svecokarelian nickel-copper deposits, Finland. Econ Geol 81: 1236–1241

    Google Scholar 

  • Papunen H (1989) Platinum-group elements in metamorphosed Ni-Cu deposits in Finland. In:Prendergast MJ, Jones MJ (eds) Magmatic sulfides-the Zimbabwe volume. IMM, London, pp 165–176

    Google Scholar 

  • Peck DC, Keays RR, Ford RJ (1992) Direct crystallization of refractory platinum-group element alloys from boninitic magmas: evidence from western Tasmania. Aust J Earth Sci 39: 373–397

    Google Scholar 

  • Peltonen P (1990) Metamorphic olivine in picritic metavolcanics from southern Finland. Geol Soc Finland Bull 62: 99–114

    Google Scholar 

  • Peltonen P (1995a) Magma-country rock interaction and the genesis of Ni-Cu deposits in the Vammala Nickel Belt, SW Finland. Mineral Petrol 52: 1–24

    Google Scholar 

  • Peltonen P (1995b) Petrogenesis of ultramafic rocks in the Vammala Nickel Belt: implications for crustal evolution of the early Proterozoic Svecofennian arc terrane. Lithos 34: 253–274

    Google Scholar 

  • Ripley EM, Chryssoulis SL (1994) Ion microprobe analyses of platinum group elements in sulfide and arsenide minerals from the Babbitt Cu-Ni deposit, Duluth Complex, Minnesota. Econ Geol 89: 201–210

    Google Scholar 

  • Robinson BW, Graham J (1992) Advances in electron microprobe trace-element analysis. J Comput Assis Micros 4 (3)

  • Watkinson DH, Ohnenstetter D (1992) Hydrothermal origin of platinum-group mineralization in the Two Duck Lake intrusion, Coldwell Complex, northwestern Ontario. Can Mineral 30: 121–136

    Google Scholar 

  • Ziebold TO (1967) Precision and sensitivity in electron microprobe analysis. Anal Chem 39: 858

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gervilla, F., Papunen, H., Kojonen, K. et al. Platinum-, palladium- and gold-rich arsenide ores from the Kylmäkoski Ni-Cu deposit. Mineralogy and Petrology 64, 163–185 (1998). https://doi.org/10.1007/BF01226568

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01226568

Keywords

Navigation